Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 224: 117372, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32979526

ABSTRACT

Spatio-temporal patterns in electroencephalography (EEG) can be described by microstate analysis, a discrete approximation of the continuous electric field patterns produced by the cerebral cortex. Resting-state EEG microstates are largely determined by alpha frequencies (8-12 Hz) and we recently demonstrated that microstates occur periodically with twice the alpha frequency. To understand the origin of microstate periodicity, we analyzed the analytic amplitude and the analytic phase of resting-state alpha oscillations independently. In continuous EEG data we found rotating phase patterns organized around a small number of phase singularities which varied in number and location. The spatial rotation of phase patterns occurred with the underlying alpha frequency. Phase rotors coincided with periodic microstate motifs involving the four canonical microstate maps. The analytic amplitude showed no oscillatory behaviour and was almost static across time intervals of 1-2 alpha cycles, resulting in the global pattern of a standing wave. In n=23 healthy adults, time-lagged mutual information analysis of microstate sequences derived from amplitude and phase signals of awake eyes-closed EEG records showed that only the phase component contributed to the periodicity of microstate sequences. Phase sequences showed mutual information peaks at multiples of 50 ms and the group average had a main peak at 100 ms (10 Hz), whereas amplitude sequences had a slow and monotonous information decay. This result was confirmed by an independent approach combining temporal principal component analysis (tPCA) and autocorrelation analysis. We reproduced our observations in a generic model of EEG oscillations composed of coupled non-linear oscillators (Stuart-Landau model). Phase-amplitude dynamics similar to experimental EEG occurred when the oscillators underwent a supercritical Hopf bifurcation, a common feature of many computational models of the alpha rhythm. These findings explain our previous description of periodic microstate recurrence and its relation to the time scale of alpha oscillations. Moreover, our results corroborate the predictions of computational models and connect experimentally observed EEG patterns to properties of critical oscillator networks.


Subject(s)
Alpha Rhythm/physiology , Brain/physiology , Electroencephalography , Wakefulness/physiology , Adult , Brain Mapping/methods , Electroencephalography/methods , Humans , Male , Rest/physiology , Young Adult
2.
Vision Res ; 83: 66-75, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23458676

ABSTRACT

The efficient coding hypothesis posits that sensory systems are adapted to the regularities of their signal input so as to reduce redundancy in the resulting representations. It is therefore important to characterize the regularities of natural signals to gain insight into the processing of natural stimuli. While measurements of statistical regularity in vision have focused on photographic images of natural environments it has been much less investigated, how the specific imaging process embodied by the organism's eye induces statistical dependencies on the natural input to the visual system. This has allowed using the convenient assumption that natural image data are homogeneous across the visual field. Here we give up on this assumption and show how the imaging process in a human model eye influences the local statistics of the natural input to the visual system across the entire visual field. Artificial scenes with three-dimensional edge elements were generated and the influence of the imaging projection onto the back of a spherical model eye were quantified. These distributions show a strong radial influence of the imaging process on the resulting edge statistics with increasing eccentricity from the model fovea. This influence is further quantified through computation of the second order intensity statistics as a function of eccentricity from the center of projection using samples from the dead leaves image model. Using data from a naturalistic virtual environment, which allows generation of correctly projected images onto the model eye across the entire field of view, we quantified the second order dependencies as function of the position in the visual field using a new generalized parameterization of the power spectra. Finally, we compared this analysis with a commonly used natural image database, the van Hateren database, and show good agreement within the small field of view available in these photographic images. We conclude by providing a detailed quantitative analysis of the second order statistical dependencies of the natural input to the visual system across the visual field and demonstrating the importance of considering the influence of the sensory system on the statistical regularities of the input to the visual system.


Subject(s)
Spectrum Analysis , Visual Perception/physiology , Fourier Analysis , Humans , Models, Biological , Models, Statistical
3.
Infant Behav Dev ; 33(4): 635-53, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20864178

ABSTRACT

The perception of the unity of objects, their permanence when out of sight, and the ability to perceive continuous object trajectories even during occlusion belong to the first and most important capacities that infants have to acquire. Despite much research a unified model of the development of these abilities is still missing. Here we make an attempt to provide such a unified model. We present a recurrent artificial neural network that learns to predict the motion of stimuli occluding each other and that develops representations of occluded object parts. It represents completely occluded, moving objects for several time steps and successfully predicts their reappearance after occlusion. This framework allows us to account for a broad range of experimental data. Specifically, the model explains how the perception of object unity develops, the role of the width of the occluders, and it also accounts for differences between data for moving and stationary stimuli. We demonstrate that these abilities can be acquired by learning to predict the sensory input. The model makes specific predictions and provides a unifying framework that has the potential to be extended to other visual event categories.


Subject(s)
Child Development , Computer Simulation , Form Perception/physiology , Pattern Recognition, Visual/physiology , Perceptual Closure/physiology , Female , Habituation, Psychophysiologic , Humans , Infant , Male
4.
Neural Comput ; 13(9): 2049-74, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11516357

ABSTRACT

Sensory integration or sensor fusion -- the integration of information from different modalities, cues, or sensors -- is among the most fundamental problems of perception in biological and artificial systems. We propose a new architecture for adaptively integrating different cues in a self-organized manner. In Democratic Integration different cues agree on a result, and each cue adapts toward the result agreed on. In particular, discordant cues are quickly suppressed and recalibrated, while cues having been consistent with the result in the recent past are given a higher weight in the future. The architecture is tested in a face tracking scenario. Experiments show its robustness with respect to sudden changes in the environment as long as the changes disrupt only a minority of cues at the same time, although all cues may be disrupted at one time or another.


Subject(s)
Cues , Models, Neurological , Pattern Recognition, Visual/physiology , Contrast Sensitivity/physiology , Face , Humans , Motion Perception/physiology , Perception/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...