Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA ; 328(24): 2412-2421, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36573973

ABSTRACT

Importance: Most studies of autosomal dominant polycystic kidney disease (ADPKD) genetics have used kidney specialty cohorts, focusing on PKD1 and PKD2. These can lead to biased estimates of population prevalence of ADPKD-associated gene variants and their phenotypic expression. Objective: To determine the prevalence of ADPKD and contributions of PKD1, PKD2, and other genes related to cystic kidney disease in a large, unselected cohort. Design, Setting, and Participants: This retrospective observational study used an unselected health system-based cohort in central and northeast Pennsylvania with exome sequencing (enrolled from 2004 to 2020) and electronic health record data (up to October 2021). The genotype-first approach included the entire cohort and the phenotype-first approach focused on patients with ADPKD diagnosis codes, confirmed by chart and imaging review. Exposures: Loss-of-function (LOF) variants in PKD1, PKD2, and other genes associated with cystic kidney disease (ie, ALG8, ALG9, DNAJB11, GANAB, HNF1B, IFT140, SEC61B, PKHD1, PRKCSH, SEC63); likely pathogenic missense variants in PKD1 and PKD2. Main Outcomes and Measures: Genotype-first analysis: ADPKD diagnosis code (Q61.2, Q61.3, 753.13, 753.12); phenotype-first analysis: presence of a rare variant in PKD1, PKD2, or other genes associated with cystic kidney disease. Results: Of 174 172 patients (median age, 60 years; 60.6% female; 93% of European ancestry), 303 patients had ADPKD diagnosis codes, including 235 with sufficient chart review data for confirmation. In addition to PKD1 and PKD2, LOF variants in IFT140, GANAB, and HNF1B were associated with ADPKD diagnosis after correction for multiple comparisons. Among patients with LOF variants in PKD1, 66 of 68 (97%) had ADPKD; 43 of 43 patients (100%) with LOF variants in PKD2 had ADPKD. In contrast, only 24 of 77 patients (31.2%) with a PKD1 missense variant previously classified as "likely pathogenic" had ADPKD, suggesting misclassification or variable penetrance. Among patients with ADPKD diagnosis confirmed by chart review, 180 of 235 (76.6%) had a potential genetic cause, with the majority being rare variants in PKD1 (127 patients) or PKD2 (34 patients); 19 of 235 (8.1%) had variants in other genes associated with cystic kidney disease. Of these 235 patients with confirmed ADPKD, 150 (63.8%) had a family history of ADPKD. The yield for a genetic determinant of ADPKD was higher for those with a family history of ADPKD compared with those without family history (91.3% [137/150] vs 50.6% [43/85]; difference, 40.7% [95% CI, 29.2%-52.3%]; P < .001). Previously unreported PKD1, PKD2, and GANAB variants were identified with pedigree data suggesting pathogenicity, and several PKD1 missense variants previously reported as likely pathogenic appeared to be benign. Conclusions and Relevance: This study demonstrates substantial genetic and phenotypic variability in ADPKD among patients within a regional health system in the US.


Subject(s)
Exome Sequencing , Polycystic Kidney, Autosomal Dominant , Female , Humans , Male , Kidney/pathology , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Retrospective Studies , TRPP Cation Channels/genetics , Middle Aged
2.
J Am Soc Nephrol ; 30(11): 2091-2102, 2019 11.
Article in English | MEDLINE | ID: mdl-31395617

ABSTRACT

BACKGROUND: Mutations in PKD1 or PKD2 cause typical autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic kidney disease. Dominantly inherited polycystic kidney and liver diseases on the ADPKD spectrum are also caused by mutations in at least six other genes required for protein biogenesis in the endoplasmic reticulum, the loss of which results in defective production of the PKD1 gene product, the membrane protein polycystin-1 (PC1). METHODS: We used whole-exome sequencing in a cohort of 122 patients with genetically unresolved clinical diagnosis of ADPKD or polycystic liver disease to identify a candidate gene, ALG9, and in vitro cell-based assays of PC1 protein maturation to functionally validate it. For further validation, we identified carriers of ALG9 loss-of-function mutations and noncarrier matched controls in a large exome-sequenced population-based cohort and evaluated the occurrence of polycystic phenotypes in both groups. RESULTS: Two patients in the clinically defined cohort had rare loss-of-function variants in ALG9, which encodes a protein required for addition of specific mannose molecules to the assembling N-glycan precursors in the endoplasmic reticulum lumen. In vitro assays showed that inactivation of Alg9 results in impaired maturation and defective glycosylation of PC1. Seven of the eight (88%) cases selected from the population-based cohort based on ALG9 mutation carrier state who had abdominal imaging after age 50; seven (88%) had at least four kidney cysts, compared with none in matched controls without ALG9 mutations. CONCLUSIONS: ALG9 is a novel disease gene in the genetically heterogeneous ADPKD spectrum. This study supports the utility of phenotype characterization in genetically-defined cohorts to validate novel disease genes, and provide much-needed genotype-phenotype correlations.


Subject(s)
Cysts/etiology , Heterozygote , Liver Diseases/etiology , Mannosyltransferases/genetics , Membrane Proteins/genetics , Mutation , Polycystic Kidney, Autosomal Dominant/etiology , Adult , Aged , Aged, 80 and over , Cysts/genetics , Female , Humans , Liver Diseases/genetics , Male , Middle Aged , Polycystic Kidney, Autosomal Dominant/genetics , Exome Sequencing
3.
J Neurosurg ; 120(1): 120-5, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23870021

ABSTRACT

Vein of Galen aneurysmal malformations (VGAMs) are uncommon congenital malformations arising from fistulous communication with the median vein of the prosencephalon, a primitive precursor of midline cerebral venous structures. Angiographic embolization is the primary modality for treatment given historically poor microsurgical outcomes. Only a few reports of treatment by Gamma Knife radiosurgery (GKRS) exist in the literature, and the results are variable. The authors present 2 cases of VGAM in which GKRS provided definitive treatment with good outcome: one case involving antenatal presentation of a high-output, mural-type VGAM with complex clinical course refractory to multiple embolic procedures, and the other a choroidal-type VGAM presenting with hemorrhage in an adult and without a feasible embolic approach. With discussion of these cases and review of the literature, the authors advocate inclusion of GKRS as a therapeutic option for treatment of these complex lesions.


Subject(s)
Cerebral Veins/abnormalities , Radiosurgery/instrumentation , Vein of Galen Malformations/surgery , Adult , Cerebral Veins/diagnostic imaging , Cerebral Veins/surgery , Child, Preschool , Embolization, Therapeutic , Humans , Male , Radiography , Treatment Outcome , Vein of Galen Malformations/diagnostic imaging
4.
PLoS Genet ; 5(8): e1000607, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19680541

ABSTRACT

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.


Subject(s)
Cochlea/growth & development , Hair Cells, Auditory/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retina/metabolism , Animals , Cochlea/cytology , Cochlea/metabolism , Disease Models, Animal , Female , Gene Deletion , Gene Expression Regulation, Developmental , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , Retina/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...