Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 90(9): 3088-100, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22585816

ABSTRACT

To test the hypothesis that reduction in dietary CP concentration coupled with crystalline AA inclusion increases the efficiency of AA use for milk production, mammary AA arteriovenous concentration differences (A-V), AA transport efficiency (A-V/A × 100), and transcript abundance of AA transporters and milk protein genes were determined in lactating sows fed 1 of 3 diets containing 9.5% (Deficient), 13.5% (Ideal), or 17.5% (Standard) CP, with a similar profile of indispensable and dispensable AA. On d 7 and 18, arterial and mammary venous blood and mammary tissue were sampled postfeeding. Transcript abundance of AA transporters b(0,+)AT (SLC7A9), y(+)LAT2 (SLC7A6), ATB(0,+) (SLC6A14), CAT-1 (SLC7A1), and CAT-2b (SLC7A2) and milk protein ß-casein (CSN2) and LALBA (α-lactalbumin) were determined using reverse transcription quantitative PCR. Piglet ADG increased curvilinearly (linear and quadratic, P < 0.03) with increasing percent CP from Deficient to Standard. On d 7, Lys and Arg A-V and transport efficiency increased quadratically (P < 0.05) with increasing percent CP. On d 18, Lys A-V tended to increase (linear, P = 0.08) with increasing percent CP. Increasing CP increased Ile and Val A-V on d 7 (linear, P = 0.05 and P = 0.08, respectively) and Leu and Val on d 18 (linear, P = 0.07 and P = 0.04, respectively). On d 7, plasma concentrations of branched chain AA (BCAA):Lys decreased quadratically (P < 0.05). Expression of genes SLC7A9, SLC7A6, SLC6A14, SLC7A1, SLC7A2, CSN2, and LALBA was unaffected by diet. In conclusion, decreasing the dietary CP from 17.5% to 13.5% with inclusion of crystalline AA did not affect piglet ADG, AA transporter, or milk protein gene expression but increased mammary transport efficiency and A-V of Lys and Arg on d 7 of lactation. This increase was associated with a decrease in plasma concentration of BCAA:Lys, suggesting a competitive mechanism between cationic and BCAA for transport of AA across mammary cells.


Subject(s)
Amino Acids/pharmacology , Carrier Proteins/metabolism , Dietary Proteins/pharmacology , Gene Expression Regulation/drug effects , Lactation/physiology , Mammary Glands, Animal/metabolism , Amino Acids/administration & dosage , Animals , Carrier Proteins/genetics , Dietary Proteins/metabolism , Female , Mammary Glands, Animal/blood supply , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...