Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
TH Open ; 6(2): e135-e143, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35707619

ABSTRACT

Platelet contractility drives clot contraction to enhance clot density and stability. Clot contraction is typically studied under static conditions, with fewer studies of wall-adherent platelet clots formed under flow. We tested the effect of inhibitors of ADP and/or thromboxane A2 (TXA2) signaling on clot contraction. Using an eight-channel microfluidic device, we perfused PPACK-treated whole blood (WB) ± acetylsalicylic acid (ASA), 2-methylthioAMP (2-MeSAMP), and/or MRS-2179 over collagen (100/s) for 7.5 min, then stopped flow to observe contraction for 7.5 minutes. Two automated imaging methods scored fluorescent platelet percent contraction over the no-flow observation period: (1) "global" measurement of clot length and (2) "local" changes in surface area coverage of the numerous platelet aggregates within the clot. Total platelet fluorescence intensity (FI) decreased with concomitant decrease in global aggregate contraction when ASA, 2-MeSAMP, and/or MRS-2179 were present. Total platelet FI and global aggregate contraction were highly correlated ( R 2 = 0.87). In contrast, local aggregate contraction was more pronounced than global aggregate contraction across all inhibition conditions. However, ASA significantly reduced local aggregate contraction relative to conditions without TXA2 inhibition. P-selectin display was significantly reduced by ADP and TXA2 inhibition, but there was limited detection of global or local aggregate contraction in P-selectin-positive platelets across all conditions, as expected for densely packed "core" platelets. Our results demonstrate that global aggregate contraction is inhibited by ASA, 2-MeSAMP, and MRS-2179, while ASA more potently inhibited local aggregate contraction. These results help resolve how different platelet antagonists affect global and local clot structure and function.

2.
Thromb Haemost ; 121(1): 46-57, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32961573

ABSTRACT

BACKGROUND: As thrombosis proceeds, certain platelets in a clot expose phosphatidylserine (PS) on their outer membrane. These PS+ platelets subsequently sort to the perimeter of the mass via platelet contraction. It remains unclear how thrombin and fibrin may alter PS+ platelet sorting within a clot. OBJECTIVE: We investigated the role of fibrin in PS+ platelet sorting. METHODS: We used an 8-channel microfluidic assay of clotting over collagen (±tissue factor) at 100 s-1 initial wall shear rate. Temporal PS+ platelet sorting was measured using a Pearson's correlation coefficient between the annexin V distribution in a clot at 9 versus 15 minutes. Spatial PS+ platelet sorting was measured using an autocorrelation metric of the final annexin V distribution. RESULTS: By 6 minutes, PS+ platelets were distributed throughout the platelet deposits and became highly spatially sorted by 15 minutes when thrombin and fibrin were blocked with Phe-Pro-Arg-chloromethylketone (PPACK). Fibrin polymerization (no PPACK) attenuated temporal and spatial PS sorting and clot contraction. With Gly-Pro-Arg-Pro (GPRP) added to block fibrin polymerization, PS sorting was prominent as was clot contraction. Exogenously added tissue plasminogen activator drove fibrinolysis that in turn promoted clot contraction and PS sorting, albeit to a lesser degree than the PPACK or GPRP conditions. Clots lacking fibrin displayed 3.6 times greater contraction than clots with fibrin. CONCLUSION: PS sorting correlated with clot contraction, as previously reported. However, fibrin inversely correlated with both percent contraction and PS sorting. Fibrin attenuated clot contraction and PS sorting relative to clots without fibrin.


Subject(s)
Blood Platelets/metabolism , Fibrin/metabolism , Phosphatidylserines/metabolism , Thrombosis/metabolism , Blood Coagulation , Blood Platelets/cytology , Blood Platelets/pathology , Humans , Microfluidic Analytical Techniques , Platelet Function Tests , Thrombin/metabolism , Thromboplastin/metabolism , Thrombosis/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...