Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 17(11): 2309-2319, 2018 11.
Article in English | MEDLINE | ID: mdl-30097489

ABSTRACT

Loss of the tumor suppressor PTEN confers a tumor cell dependency on the PI3Kß isoform. Achieving maximal inhibition of tumor growth through PI3K pathway inhibition requires sustained inhibition of PI3K signaling; however, efficacy is often limited by suboptimal inhibition or reactivation of the pathway. To select combinations that deliver comprehensive suppression of PI3K signaling in PTEN-null tumors, the PI3Kß inhibitor AZD8186 was combined with inhibitors of kinases implicated in pathway reactivation in an extended cell proliferation assay. Inhibiting PI3Kß and mTOR gave the most effective antiproliferative effects across a panel of PTEN-null tumor cell lines. The combination of AZD8186 and the mTOR inhibitor vistusertib was also effective in vivo controlling growth of PTEN-null tumor models of TNBC, prostate, and renal cancers. In vitro, the combination resulted in increased suppression of pNDRG1, p4EBP1, as well as HMGCS1 with reduced pNDRG1 and p4EBP1 more closely associated with effective suppression of proliferation. In vivo biomarker analysis revealed that the monotherapy and combination treatment consistently reduced similar biomarkers, while combination increased nuclear translocation of the transcription factor FOXO3 and reduction in glucose uptake. These data suggest that combining the PI3Kß inhibitor AZD8186 and vistusertib has potential to be an effective combination treatment for PTEN-null tumors. Mol Cancer Ther; 17(11); 2309-19. ©2018 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Neoplasms/pathology , PTEN Phosphohydrolase/deficiency , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aniline Compounds/pharmacology , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Chromones/pharmacology , Female , Fluorodeoxyglucose F18/pharmacokinetics , Forkhead Box Protein O3/metabolism , Glucose/metabolism , Humans , Mice, Nude , Neoplasms/enzymology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport/drug effects , TOR Serine-Threonine Kinases/metabolism
2.
J Med Chem ; 59(10): 4859-66, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27078757

ABSTRACT

Optimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptor, IGF Type 1/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...