Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 11: 227, 2020.
Article in English | MEDLINE | ID: mdl-32265734

ABSTRACT

Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by "casting open" the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.

3.
J Surg Res ; 166(1): e71-81, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21195426

ABSTRACT

BACKGROUND: Ventilator strategies that maintain an "open lung" have shown promise in treating hypoxemic patients. We compared three "open lung" strategies with standard of care low tidal volume ventilation and hypothesized that each would diminish physiologic and histopathologic evidence of ventilator induced lung injury (VILI). MATERIALS AND METHODS: Acute lung injury (ALI) was induced in 22 pigs via 5% Tween and 30-min of injurious ventilation. Animals were separated into four groups: (1) low tidal volume ventilation (LowVt -6 mL/kg); (2) high-frequency oscillatory ventilation (HFOV); (3) airway pressure release ventilation (APRV); or (4) recruitment and decremental positive-end expiratory pressure (PEEP) titration (RM+OP) and followed for 6 h. Lung and hemodynamic function was assessed on the half-hour. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokines. Lung tissue was harvested for histologic analysis. RESULTS: APRV and HFOV increased PaO(2)/FiO(2) ratio and improved ventilation. APRV reduced BALF TNF-α and IL-8. HFOV caused an increase in airway hemorrhage. RM+OP decreased SvO(2), increased PaCO(2), with increased inflammation of lung tissue. CONCLUSION: None of the "open lung" techniques were definitively superior to LowVt with respect to VILI; however, APRV oxygenated and ventilated more effectively and reduced cytokine concentration compared with LowVt with nearly indistinguishable histopathology. These data suggest that APRV may be of potential benefit to critically ill patients but other "open lung" strategies may exacerbate injury.


Subject(s)
Acute Lung Injury/physiopathology , Acute Lung Injury/therapy , Respiration, Artificial/methods , Tidal Volume/physiology , Acute Lung Injury/pathology , Animals , Apoptosis/physiology , Bronchoalveolar Lavage Fluid/immunology , Cardiovascular Physiological Phenomena , Continuous Positive Airway Pressure/methods , Disease Models, Animal , High-Frequency Ventilation/methods , Interleukin-8/metabolism , Lung/pathology , Lung/physiology , Positive-Pressure Respiration/methods , Sus scrofa , Tumor Necrosis Factor-alpha/metabolism
4.
J Surg Res ; 162(2): 250-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-19560160

ABSTRACT

BACKGROUND: Patients with acute respiratory distress syndrome (ARDS) are often ventilated with high airway pressure. Brief loss of airway pressure may lead to an extended loss of oxygenation. While using high frequency oscillatory ventilation (HFOV) in a porcine acute lung injury model, two animals became disconnected from the ventilator with subsequent loss of airway pressure. We compared the two disconnected animals to the two animals that remained connected to determine causes for the extended reduction in oxygenation. METHODS: ARDS was induced using 5% Tween. Thirty min of nonprotective ventilation (NPV) followed before placing the pigs on HFOV. Measurements were made at baseline, after lung injury, and every 30min during the 6-h study. Disconnections were treated by hand-ventilation and a recruitment maneuver before being placed back on HFOV. The lungs were histologically analyzed and wet/dry weights were measured to determine lung edema. RESULTS: Hemodynamics and lung function were similar in all pigs at baseline, after injury, and following NPV. The animals that remained connected to the oscillator showed a continued improvement in PaO(2)/FiO(2) (P/F) ratio throughout the study. The animals that experienced the disconnection had a significant loss of lung function that never recovered. The disconnect animals had more diffuse alveolar disease on histologic analysis. CONCLUSIONS: A significant fall in lung function results following disconnection from HFOV, which remains depressed for a substantial period of time despite efforts to reopen the lung. Dispersion of edema fluid is a possible mechanism for the protracted loss of lung function.


Subject(s)
Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Anesthesia, General , Animals , Blood Gas Analysis , Blood Pressure , Disease Models, Animal , Diuresis , Heart Rate , Hemodynamics , Humans , Lung Injury/physiopathology , Models, Animal , Organ Size , Pulmonary Artery/physiology , Pulmonary Artery/physiopathology , Respiratory Function Tests , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...