Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Viruses ; 16(5)2024 05 14.
Article in English | MEDLINE | ID: mdl-38793660

ABSTRACT

Due to low susceptibility of coronavirus disease of 2019 (COVID-19) in children, limited studies are available regarding COVID-19 in the pediatric population in Tunisia. The current study evaluated the incidence, clinical characteristics, and outcomes of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection among children hospitalized at Béchir Hamza Children's Hospital. A retrospective cohort analysis was conducted using the hospital database between March 2020 and February 2022 with children aged ≤15 years with SARS-CoV-2 infection (confirmed by RT-PCR). A total of 327 COVID-19 hospitalized patients with a mean age of 3.3 years were included; the majority were male. Neurological disease (20%) was the most common comorbidity, while fever (95.3%) followed by cough (43.7%) and dyspnea (39.6%) were the most frequent symptoms reported. Severe disease with oxygen requirement occurred in 30% of the patients; 13% were admitted in the Intensive Care Unit. The overall incidence rate of COVID-19 hospitalization (in Tunis governorates) was 77.02 per 100,000 while the inpatient case fatality rate was 5% in the study population. The most prevalent circulating variant during our study period was Delta (48.8%), followed by Omicron (26%). More than 45% of the study population were <6 months and one-fourth (n = 25, 26.5%) had at least one comorbidity. Thus, the study findings highlight the high disease burden of COVID-19 in infants.


Subject(s)
COVID-19 , Comorbidity , Hospitalization , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , Tunisia/epidemiology , Male , Female , Child , Retrospective Studies , Child, Preschool , Adolescent , Hospitalization/statistics & numerical data , Infant , SARS-CoV-2/genetics , Incidence , Infant, Newborn
2.
Virus Res ; 344: 199353, 2024 06.
Article in English | MEDLINE | ID: mdl-38490581

ABSTRACT

The emergence of SARS-CoV-2 variants has led to several cases among children. However, limited information is available from North African countries. This study describes the SARS-CoV-2 strains circulating in Tunisian pediatric population during successive waves. A total of 447 complete sequences were obtained from individuals aged from 13 days to 18 years, between March 2020 and September 2022: 369 sequences generated during this study and 78 ones, available in GISAID, previously obtained from Tunisian pediatric patients. These sequences were compared with 354 and 274 ones obtained from Tunisian adults and a global dataset, respectively. The variant circulation dynamics of predominant variants were investigated during the study period using maximum-likelihood phylogenetic analysis. Among the studied population, adolescents were the predominant age group, comprising 55.26% of cases. Twenty-three lineages were identified; seven of which were not previously reported in Tunisia. Phylogenetic analysis showed a close relationship between the sequences from Tunisian adults and children. The connections of sequences from other countries were variable according to variants: close relationships were observed for Alpha, B1.160 and Omicron variants, while independent Tunisian clusters were observed for Delta and B.1.177 lineages. These findings highlight the pivotal role of children in virus transmission and underscore the impact of vaccination on virus spread. Vaccination of children, with booster doses, may be considered for better management of future emergences.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2 , Humans , Tunisia/epidemiology , COVID-19/virology , COVID-19/epidemiology , Child , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Child, Preschool , Infant , Adolescent , Male , Infant, Newborn , Female
3.
Vaccines (Basel) ; 12(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38400157

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (ASCT) induces acquired immunodeficiency, potentially altering vaccine response. Herein, we aimed to explore the clinical tolerance and the humoral and cellular immune responses following anti-SARS-CoV-2 vaccination in ASCT recipients. METHODS: A prospective, non-randomized, controlled study that involved 43 ASCT subjects and 31 healthy controls. Humoral response was investigated using the Elecsys® test anti-SARS-CoV-2. Cellular response was assessed using the QFN® SARS-CoV-2 test. The lymphocyte cytokine profile was tested using the LEGENDplex™ HU Th Cytokine Panel Kit (12-plex). RESULTS: Adverse effects (AE) were observed in 69% of patients, encompassing pain at the injection site, fever, asthenia, or headaches. Controls presented more side effects like pain in the injection site and asthenia with no difference in the overall AE frequency. Both groups exhibited robust humoral and cellular responses. Only the vaccine transplant delay impacted the humoral response alongside a previous SARS-CoV-2 infection. Noteworthily, controls displayed a Th1 cytokine profile, while patients showed a mixed Th1/Th2 profile. CONCLUSIONS: Pfizer-BioNTech® anti-SARS-CoV-2 vaccination is well tolerated in ASCT patients, inducing robust humoral and cellular responses. Further exploration is warranted to understand the impact of a mixed cytokine profile in ASCT patients.

4.
Epidemiologia (Basel) ; 5(1): 80-89, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38390918

ABSTRACT

Due to the emergence of the SARS-CoV-2 B.1.1.7 (Alpha) variant in the UK in 2020 and its risk of increased transmission, the Ministry of Health in Tunisia implemented a sequencing surveillance strategy for SARS-CoV-2. The aim of this study was to analyze SARS-CoV-2 genomic surveillance data in Tunisia (January 2021-February 2022) and to assess the implementation of the sequencing strategy for SARS-CoV-2 in accordance with national recommendations and the guidance for SARS-CoV-2 genomic surveillance for public health goals. A descriptive study of all sequenced RT-PCR samples sequenced (January 2021-February2022). An internal audit was also done to assess the compliance against standards covering national recommendations and the Guidance for SARS-CoV-2 genomic surveillance for public health goals. A total of 12 simple or composite requirements related to the following areas were included in the audit standards: sampling (one requirements); data collection/analysis (six requirements); partnership (one requirement); and ethical considerations (one requirement). A total of 4819 samples were sent to laboratories and 4278 samples were sequenced. A total of 3648 samples were classified. Positive variants of concern (VOC) samples were 80.92%, differentiated as follows: Alpha, 40.24%; Beta, 0.24%; Gamma, 0.03%; Delta, 45.26%; and Omicron, 14.19%. Three principal phases of VOCs per ISO-week were shown: Alpha 3/2021-25/2021; Delta 26/2021-2/2022; and Omicron 3/2022-6/2022. Levels of compliance were identified; from a total of 12 requirements, 7 were considered as "not met", 4 as "partially met", and 1 as "fully met" but including not totally achieved objectives. In conclusion, the internal audit of the national SARS-CoV-2 sequencing strategy revealed an overall "not met" level of compliance. The results offered a trigger to collaborate with all stakeholders to develop a surveillance strategy for early detection and response to outbreaks caused by VOCs.

5.
J Clin Virol ; 170: 105633, 2024 02.
Article in English | MEDLINE | ID: mdl-38103483

ABSTRACT

West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.


Subject(s)
West Nile virus , Humans , West Nile virus/genetics , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques , Sensitivity and Specificity , RNA, Viral/genetics
6.
Front Med (Lausanne) ; 10: 1226207, 2023.
Article in English | MEDLINE | ID: mdl-38020093

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for serious respiratory infections in humans. Even in the absence of respiratory symptoms, gastrointestinal (GI) signs were commonly reported in adults and children. Thus, oral-fecal transmission was suspected as a possible route of infection. The objective of this study was to describe RNA shedding in nasopharyngeal and stool samples obtained from asymptomatic and symptomatic children and to investigate virus viability. Methods: This study included 179 stool and 191 nasopharyngeal samples obtained from 71 children, which included symptomatic (n = 64) and asymptomatic (n = 7) ones. They were collected every 7 days from the onset of the infection until negativation. Viral RNA was detected by real-time RT-PCR, targeting the N and ORF1 genes. Whole-genome sequencing was performed for positive cases. Viral isolation was assessed on Vero cells, followed by molecular detection confirmation. Results: All cases included in this study (n = 71) were positive in their nasopharyngeal samples. SARS-CoV-2 RNA was detected in 36 stool samples obtained from 15 out of 71 (21.1%) children; 13 were symptomatic and two were asymptomatic. Excretion periods varied from 7 to 21 days and 7 to 14 days in nasopharyngeal and fecal samples, respectively. Four variants were detected: Alpha (n = 3), B.1.160 (n = 3), Delta (n = 7), and Omicron (n = 1). Inoculation of stool samples on cell culture showed no specific cytopathic effect. All cell culture supernatants were negative for RT-qPCR. Conclusion: Our study demonstrated nasopharyngeal and fecal shedding of SARS-CoV-2 RNA by children up to 21 and 14 days, respectively. Fecal shedding was recorded in symptomatic and asymptomatic children. Nevertheless, SARS-CoV-2 was not isolated from positive stool samples.

7.
Vaccines (Basel) ; 11(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37631897

ABSTRACT

(1) Background: This study aimed to compare the immunogenicity of the mix-and-match CoronaVac/BNT162b2 vaccination to the homologous CoronaVac/CoronaVac regimen. (2) Methods: We conducted a simple-blinded randomized superiority trial to measure SARS-CoV-2 neutralization antibodies and anti-spike receptor binding domain (RBD) IgG concentrations in blood samples of participants who had received the first dose of CoronaVac vaccine followed by a dose of BNT162b2 or CoronaVac vaccine. The primary endpoint for immunogenicity was the serum-neutralizing antibody level with a percentage of inhibition at 90% at 21-35 days after the boost. A difference of 25% between groups was considered clinically relevant. (3) Results: Among the 240 eligible participants, the primary endpoint data were available for 100 participants randomly allocated to the mix-and-match group versus 99 participants randomly allocated to the homologous dose group. The mix-and-match regimen elicited significantly higher levels of neutralizing antibodies (median level of 96%, interquartile range (IQR) (95-97) versus median level of 94%, IQR (81-96) and anti-spike IgG antibodies (median level of 13,460, IQR (2557-29,930) versus median level of 1190, IQR (347-4964) compared to the homologous group. Accordingly, the percentage of subjects with a percentage of neutralizing antibodies > 90% was significantly higher in the mix-and-match group (90.0%) versus the homologous (60.6%). Interestingly, no severe events were reported within 30 days after the second dose of vaccination in both groups. (4) Conclusions: Our data showed the superiority of the mix-and-match CoronaVac/BNT162b2 vaccination compared to the CoronaVac/CoronaVac regimen in terms of immunogenicity, thus constituting a proof-of-concept study supporting the use of inactivated vaccines in a mix-and-match strategy while ensuring good immunogenicity and safety.

8.
Biomedicines ; 10(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36551862

ABSTRACT

Introduction: SARS-CoV-2 serology have several indications. Currently, as there are various types available, it is important to master their performance in order to choose the best test for the indication. We evaluated and compared four different commercial serology tests, three of them had the Food and Drug Administration Emergency Use Authorization (FDA-EUA). Our goal was to provide new data to help guide the interpretation and the choice of the serological tests. Methods: Four commercial tests were studied: Elecsys® Roche® on Cobas® (total anti-nucleocapsid (N) antibodies), VIDAS® Biomerieux® (IgM and IgG anti- receptor binding domain (RBD) antibodies), Mindray® (IgM and IgG anti-N and anti-RBD antibodies) and Access® Beckman Coulter® (IgG anti-RBD antibodies). Two panels were tested: a positive panel (n = 72 sera) obtained from COVID-19-confirmed patients with no vaccination history and a negative panel (n = 119) of pre-pandemic sera. The analytical performances were evaluated and the ROC curve was drawn to assess the manufacturer's cut-off for each test. Results: A large range of variability between the tests was found. The Mindray®IgG and Cobas® tests showed the best overall sensitivity, which was equal to 79.2% CI 95% (67.9−87.8). The Cobas® test showed the best sensitivity after 14 days of COVID-19 molecular confirmation; which was equal to 85.4% CI 95% (72.2−93.9). The Access® test had a lower sensitivity, even after day 14 (55.5% CI 95% (43.4−67.3)). The best specificity was noted for the Cobas®, VIDAS®IgG and Access® IgG tests (100% CI 95% (96.9−100)). The IgM tests, VIDAS®IgM and Mindray®IgM, showed the lowest specificity and sensitivity rates. Overall, only 43 out of 72 sera (59.7%) showed concordant results by all tests. Retained cut-offs for a significantly better sensitivity and accuracy, without significant change in the specificity, were: 0.87 for Vidas®IgM (p = 0.01) and 0.14 for Access® (p < 10−4). The combination of Cobas® with Vidas® IgM and IgG offered the best accuracy in comparison with all other tests combinations. Conclusion: Although using an FDA-EUA approved serology test, each laboratory should carry out its own evaluation. Tests variability may raise some concerns that seroprevalence studies may vary significantly based on the used serology test.

9.
Front Microbiol ; 13: 1020147, 2022.
Article in English | MEDLINE | ID: mdl-36325017

ABSTRACT

Hepatitis B virus (HBV) infection remains a serious public health concern worldwide despite the availability of an efficient vaccine and the major improvements in antiviral treatments. The aim of the present study is to analyze the mutational profile of the HBV whole genome in ETV non-responder chronic HBV patients, in order to investigate antiviral drug resistance, immune escape, and liver disease progression to Liver Cirrhosis (LC) or Hepatocellular Carcinoma (HCC). Blood samples were collected from five chronic hepatitis B patients. For each patient, two plasma samples were collected, before and during the treatment. Whole genome sequencing was performed using Sanger technology. Phylogenetic analysis comparing the studied sequences with reference ones was used for genotyping. The mutational profile was analyzed by comparison with the reference sequence M32138. Genotyping showed that the studied strains belong to subgenotypes D1, D7, and D8. The mutational analysis showed high genetic variability. In the RT region of the polymerase gene, 28 amino acid (aa) mutations were detected. The most significant mutations were the pattern rtL180M + rtS202G + rtM204V, which confer treatment resistance. In the S gene, 35 mutations were detected namely sP120T, sT126S, sG130R, sY134F, sS193L, sI195M, and sL216stop were previously described to lead to vaccine, immunotherapy, and/or diagnosis escape. In the C gene, 34 mutations were found. In particular, cG1764A, cC1766G/T, cT1768A, and cC1773T in the BCP; cG1896A and cG1899A in the precore region and cT12S, cE64D, cA80T, and cP130Q in the core region were associated with disease progression to LC and/or HCC. Other mutations were associated with viral replication increase including cT1753V, cG1764A/T, cC1766G/T, cT1768A, and cC1788G in the BCP as well as cG1896A and cG1899A in the precore region. In the X gene, 30 aa substitutions were detected, of which substitutions xT36D, xP46S, xA47T, xI88F, xA102V, xI127T, xK130M, xV131I, and xF132Y were previously described to lead to LC and/or HCC disease progression. In conclusion, our results show high genetic variability in the long-term treatment of chronic HBV patients causing several effects. This could contribute to guiding national efforts to optimize relevant HBV treatment management in order to achieve the global hepatitis elimination goal by 2030.

10.
Infect Genet Evol ; 105: 105375, 2022 11.
Article in English | MEDLINE | ID: mdl-36241024

ABSTRACT

The impressive improvements in qua therapy efficacy alone are not sufficient to substantially reduce the Hepatitis C Virus burden because of the usually very long asymptomatic phase of the infection. In turn, this renders prevention of infection of great importance. The value of learning how the virus has spread in the past is that this can provide clues as to what routes the virus likely spreads through today, which can feedback into prevention policy. In Tunisia, HCV subtypes 2i and 4d are minor circulating subtypes. Here, we applied a Bayesian Markov Chain Monte Carlo method for visualization of spatial and temporal spread of HCV-2i and 4d in Tunisia and some other countries in the world. Our analysis included sequences retrieved from Genbank and isolated from several countries in the world; 21 HCV-NS5B subtype 2i genome sequences obtained during the period 2002-2020 and 206 HCV-NS5B-4d sequences detected between 2000 and 2019. Phylogenetic analysis revealed that two geographical clusters could be identified in HCV-2i tree with two clearly distinguished clusters in HCV-4d Tree. The estimated time for the most recent common ancestor suggested that current HCV-2i strains emerged in 1963 [1930, 1995] and current HCV-4d strains emerged in 1992 [1988, 1996] in Tunisia and other countries from the world investigated in the present study.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Phylogeny , Tunisia/epidemiology , Bayes Theorem , Hepatitis C/epidemiology , Genotype
11.
Virol J ; 19(1): 144, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076271

ABSTRACT

BACKGROUND: COVID-19, the coronavirus disease that emerged in December 2019, caused drastic damage worldwide. At the beginning of the pandemic, available data suggested that the infection occurs more frequently in adults than in infants. In this review, we aim to provide an overview of SARS-CoV-2 infection in children before and after B.1.617.2 Delta and B.1.1.529 Omicron variants emergence in terms of prevalence, transmission dynamics, clinical manifestations, complications and risk factors. METHODS: Our method is based on the literature search on PubMed, Science Direct and Google Scholar. From January 2020 to July 2022, a total of 229 references, relevant for the purpose of this review, were considered. RESULTS: The incidence of SARS-CoV-2 infection in infants was underestimated. Up to the first half of May, most of the infected children presented asymptomatic or mild manifestations. The prevalence of COVID-19 varied from country to another: the highest was reported in the United States (22.5%). COVID-19 can progress and become more severe, especially with the presence of underlying health conditions. It can also progress into Kawasaki or Multisystem Inflammatory Syndrome (MIS) manifestations, as a consequence of exacerbating immune response. With the emergence of the B.1.617.2 Delta and B.1.1.529 Omicron variants, it seems that these variants affect a large proportion of the younger population with the appearance of clinical manifestations similar to those presented by adults with important hospitalization rates. CONCLUSION: The pediatric population constitutes a vulnerable group that requires particular attention, especially with the emergence of more virulent variants. The increase of symptomatic SARS-CoV-2 infection and hospitalization rate among children highlights the need to extend vaccination to the pediatric population.


Subject(s)
COVID-19 , Adult , COVID-19/complications , COVID-19/epidemiology , Child , Humans , Infant , Pandemics , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome
12.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35893838

ABSTRACT

BACKGROUND: The mass vaccination campaign against SARS-CoV-2 was started in Tunisia on 13 March 2021 by using progressively seven different vaccines approved for emergency use. Herein, we aimed to evaluate the humoral and cellular immunity in subjects aged 40 years and over who received one of the following two-dose regimen vaccines against SARS-CoV-2, namely mRNA-1273 or Spikevax (Moderna), BNT162B2 or Comirnaty (Pfizer-BioNTech), Gam-COVID-Vac or Sputnik V (Gamaleya Research Institute), ChAdOx1-S or Vaxzevria (AstraZeneca), BIBP (Sinopharm), and Coronavac (Sinovac). MATERIAL AND METHODS: For each type of vaccine, a sample of subjects aged 40 and over was randomly selected from the national platform for monitoring COVID-19 vaccination and contacted to participate to this study. All consenting participants were sampled for peripheral blood at 3-7 weeks after the second vaccine dose to perform anti-S and anti-N serology by the Elecsys® (Lenexa, KS, USA) anti-SARS-CoV-2 assays (Roche® Basel, Switzerland). The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland) for a randomly selected sub-group. RESULTS: A total of 501 people consented to the study and, of them, 133 were included for the cellular response investigations. Both humoral and cellular immune responses against SARS-CoV-2 antigens differed significantly between all tested groups. RNA vaccines induced the highest levels of humoral and cellular anti-S responses followed by adenovirus vaccines and then by inactivated vaccines. Vaccines from the same platform induced similar levels of specific anti-S immune responses except in the case of the Sputnik V and the AstraZeneca vaccine, which exhibited contrasting effects on humoral and cellular responses. When analyses were performed in subjects with negative anti-N antibodies, results were similar to those obtained within the total cohort, except for the Moderna vaccine, which gave a better cellular immune response than the Pfizer vaccine and RNA vaccines, which induced similar cellular immune responses to those of adenovirus vaccines. CONCLUSION: Collectively, our data confirmed the superiority of the RNA-based COVID-19 vaccines, in particular that of Moderna, for both humoral and cellular immunogenicity. Our results comparing between different vaccine platforms in a similar population are of great importance since they may help decision makers to adopt the best strategy for further national vaccination programs.

13.
Front Med (Lausanne) ; 9: 909660, 2022.
Article in English | MEDLINE | ID: mdl-35872771

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for COVID-19 disease which is known to have a broad clinical spectrum, from asymptomatic to critical presentation leading to death. Many researchers have investigated the factors impacting the course of the disease. Our previous in silico study suggested a possible protective effect of Hepatitis B, Tetanus and Measles vaccines against COVID-19. In continuity, we conducted a cross-sectional clinical study in order to confirm our in silico assumptions regarding the HBs-Ag antibodies. Methods: A representative sex- and age-matched sample of patients with confirmed COVID-19 was selected (n = 340). All clinical presentations were equally represented. Using an ELISA test, each patient benefited of a serology for the detection and measurement of the anti-HBs specific IgG antibodies. The obtained results allowed determining the different correlations between these antibody titers and the disease severity. The R® software and the MedCalc® software served to calculate the Spearman's coefficient of rank correlation (rho) for the obtained titers per severity group as well as the different other calculations and figure representations. Results: A significant positive correlation was found with the anti-HBs titers (rho = 0.107; p = 0.04). High anti-HBs titers were significantly associated with the mild presentation of COVID-19. A significant difference was found between the obtained titers per severity class (chi-2 test, p = 0.03). Discussion/Conclusion: Our findings demonstrated that anti-HBs titers were significantly higher for patients having mild COVID-19 presentations. We presume that being immunized against the HB may play a protective role in the course of the disease. Our study provided more key elements in understanding the disparity of the clinical spectrum among regions.

14.
Sci Rep ; 12(1): 11298, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35788676

ABSTRACT

Reliable serological assays are needed to understand the real impact of COVID-19. In order to compare the efficiency of different COVID-19 vaccines used in the National Vaccination Program in Tunisia, we have developed a quantitative in-house ELISA. The ELISA is based on the ectodomain of the SARS-CoV-2 Spike Baculovirus recombinant protein. We used a panel of 145 COVID-19 RT-PCR positive serum samples and 116 pre-pandemic serum samples as a negative panel. The validation was carried out by comparison to four commercial techniques (Vidas SARS-CoV-2 IgG anti-RBD Biomérieux, Elecsys Anti-Nucleocapsid of SARS-CoV-2 Roche, cPass GenScript and the quantitative Elecsys Anti-RBD of SARS-CoV-2, Roche). For the evaluation of the National Vaccination campaign, we have included 115 recipients who received one of the approved vaccines. The qualitative performances of the developed ELISA gave 96% sensitivity, 97.5% specificity and 0.968 accuracy. For the evaluation of the different brand of vaccines in recipients not previously infected with SARS-CoV-2, it seems that mRNA vaccine of Pfizer/BioNTech has shown a higher efficacy compared to inactivated virus vaccines. COVID-19 convalescent individuals have generated poor antibody responses. Nevertheless, when they are vaccinated with any brand of the COVID-19 vaccines, many of them mounted an exponential increase of the induced immune responses, qualified as a "hybrid vigor immunity". Our developed in-house ELISA seems to be very efficient in evaluating the effectiveness of anti-COVID-19 vaccination. Platforms based on mRNA vaccine are better performing than those based on inactivated virus.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2 , Vaccines, Inactivated , Vaccines, Synthetic , mRNA Vaccines
15.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: mdl-35632749

ABSTRACT

SARS-CoV-2 is constantly evolving with lineages emerging and others eclipsing. Some lineages have an important epidemiological impact and are known as variants of interest (VOIs), variants under monitoring (VUMs) or variants of concern (VOCs). Lineage A.27 was first defined as a VUM since it holds mutations of concern. Here, we report additional lineage A.27 data and sequences from five African countries and describe the molecular characteristics, and the genetic history of this lineage worldwide. Based on the new sequences investigated, the most recent ancestor (tMRCA) of lineage A.27 was estimated to be from April 2020 from Niger. It then spread to Europe and other parts of the world with a peak observed between February and April 2021. The detection rate of A.27 then decreased with only a few cases reported during summer 2021. The phylogenetic analysis revealed many sub-lineages. Among them, one was defined by the substitution Q677H in the spike (S) gene, one was defined by the substitution D358N in the nucleoprotein (N) gene and one was defined by the substitution A2143V in the ORF1b gene. This work highlights the importance of molecular characterization and the timely submission of sequences to correctly describe the circulation of particular strains in order to be proactive in monitoring the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Humans , Pandemics , Phosphoproteins/genetics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Arch Microbiol ; 204(5): 238, 2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35366683

ABSTRACT

INTRODUCTION: Routine laboratory screening is based on the detection of WNV specific IgM and IgG in blood and cerebrospinal fluid. Confirmation is then classically applied by real time RT-PCR (rRT-PCR) in Cerebrospinal fluid (CSF), which often gives negative results due to too short virorachia and late sampling. rRT-PCR was applied-for the first time for routine diagnosis purpose-on urine samples. METHODS: During 2018 outbreak in Tunisia, 107 patients presented WNV neurologic symptoms and were positive for WNV serology. Of them, 95 patients were sampled for urine and 35 were sampled for CSF. Qualitative rRT-PCR was performed on both type of samples. RESULTS: WNV RNA was detected in 50.5% of urine samples (48/95) and in 2.8% of CSF samples (1/35). WNV RNA was detectable from day 1 to day 41 from symptom onset, however, positive urine rate was 53.1% during the first 10 days from symptom onset. The proportions of urine-positive and urine-negative samples, based on day of collection, showed no statistical difference (p > 0.005). Cycle threshold (Ct) values ranged from 12 to 39, with no correlation with the day of collection. The lowest Ct value was detected for urine sampled on day 5 after symptom onset. A statistically significant difference was found between age groups of confirmed and non confirmed cases (p < 0.001). DISCUSSION/CONCLUSION: Our study reported the use of rRT-PCR on urine samples as a confirmatory diagnostic tool for WNV "probable cases" during an outbreak. Our findings underlined the reliability and the rapidity of this confirmatory tool, even late, and showed its superiority on CSF investigation.


Subject(s)
West Nile Fever , West Nile virus , Humans , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , West Nile Fever/diagnosis , West Nile Fever/epidemiology , West Nile virus/genetics
17.
Virol J ; 19(1): 54, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346227

ABSTRACT

INTRODUCTION: RT-PCR testing on nasopharyngeal swabs is a key component in the COVID-19 fighting, provided to use sensitive and specific SARS-CoV2 genome targets. In this study, we aimed to evaluate and to compare 4 widely used WHO approved RT-PCR protocols on real clinical specimens, to decrypt the reasons of the diverging results and to propose recommendations for the choice of the genome targets. METHODS: 260 nasopharyngeal samples were randomly selected among the samples tested between Week-16, 2020 and week-16 2021, in the Institut Pasteur de Tunis, Tunisia, one of the referent laboratories of COVID-19 in Tunisia. All samples were tested by Charité, Berlin protocol (singleplex envelop (E) and singleplex RNA-dependent RNA polymerase (RdRp)), Hong Kong Universiy, China protocol (singleplex nucleoprotein (N) and singleplex Open reading frame Orf1b), commercial test DAAN Gene® (using the CDC China protocol), (triplex N, Orf1ab with internal control) and Institut Pasteur Paris protocol (IPP) (triplex IP2(nsp9) and IP4 (nsp12) with internal control). For IPP, a selection from samples positive by IP2 but negative with IP4 was re-tested by exactly the same protocol but this time in singleplex. New results were described and analyzed. RESULTS: In vitro analysis showed discordant results in 29.2% of cases (76 out of 260). The most discordant protocol is DAAN Gene® due to the false positive late signals with N target. Discordant results between the two protocol's targets are more frequent when viral load are low (high Ct values). Our results demonstrated that the multiplexing has worsened the sensitivity of the IP4 target. CONCLUSION: We provide concise recommendations for the choice of the genome targets, the interpretation of the results and the alarm signals which makes suspect a gene mutation.


Subject(s)
COVID-19 , RNA, Viral , COVID-19/diagnosis , Humans , Laboratories , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , World Health Organization
18.
Viruses ; 14(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35337031

ABSTRACT

Documenting the circulation dynamics of SARS-CoV-2 variants in different regions of the world is crucial for monitoring virus transmission worldwide and contributing to global efforts towards combating the pandemic. Tunisia has experienced several waves of COVID-19 with a significant number of infections and deaths. The present study provides genetic information on the different lineages of SARS-CoV-2 that circulated in Tunisia over 17 months. Lineages were assigned for 1359 samples using whole-genome sequencing, partial S gene sequencing and variant-specific real-time RT-PCR tests. Forty-eight different lineages of SARS-CoV-2 were identified, including variants of concern (VOCs), variants of interest (VOIs) and variants under monitoring (VUMs), particularly Alpha, Beta, Delta, A.27, Zeta and Eta. The first wave, limited to imported and import-related cases, was characterized by a small number of positive samples and lineages. During the second wave, a large number of lineages were detected; the third wave was marked by the predominance of the Alpha VOC, and the fourth wave was characterized by the predominance of the Delta VOC. This study adds new genomic data to the global context of COVID-19, particularly from the North African region, and highlights the importance of the timely molecular characterization of circulating strains.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Molecular Epidemiology , SARS-CoV-2/genetics , Tunisia/epidemiology
19.
Front Public Health ; 10: 990832, 2022.
Article in English | MEDLINE | ID: mdl-36684874

ABSTRACT

Introduction: The Delta variant posed an increased risk to global public health and rapidly replaced the pre-existent variants worldwide. In this study, the genetic diversity and the spatio-temporal dynamics of 662 SARS-CoV2 genomes obtained during the Delta wave across Tunisia were investigated. Methods: Viral whole genome and partial S-segment sequencing was performed using Illumina and Sanger platforms, respectively and lineage assignemnt was assessed using Pangolin version 1.2.4 and scorpio version 3.4.X. Phylogenetic and phylogeographic analyses were achieved using IQ-Tree and Beast programs. Results: The age distribution of the infected cases showed a large peak between 25 to 50 years. Twelve Delta sub-lineages were detected nation-wide with AY.122 being the predominant variant representing 94.6% of sequences. AY.122 sequences were highly related and shared the amino-acid change ORF1a:A498V, the synonymous mutations 2746T>C, 3037C>T, 8986C>T, 11332A>G in ORF1a and 23683C>T in the S gene with respect to the Wuhan reference genome (NC_045512.2). Spatio-temporal analysis indicates that the larger cities of Nabeul, Tunis and Kairouan constituted epicenters for the AY.122 sub-lineage and subsequent dispersion to the rest of the country. Discussion: This study adds more knowledge about the Delta variant and sub-variants distribution worldwide by documenting genomic and epidemiological data from Tunisia, a North African region. Such results may be helpful to the understanding of future COVID-19 waves and variants.


Subject(s)
COVID-19 , Genetic Variation , SARS-CoV-2 , Adult , Animals , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/virology , Pangolins , Phylogeny , RNA, Viral , SARS-CoV-2/genetics , Tunisia/epidemiology
20.
Microbiol Spectr ; 9(3): e0063921, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34756072

ABSTRACT

Recent efforts have reported numerous variants that influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral characteristics, including pathogenicity, transmission rate, and detectability by molecular tests. Whole-genome sequencing based on next-generation sequencing technologies is the method of choice to identify all viral variants; however, the resources needed to use these techniques for a representative number of specimens remain limited in many low- and middle-income countries. To decrease sequencing costs, we developed a primer set allowing partial sequences to be generated in the viral S gene, enabling rapid detection of numerous variants of concern (VOCs) and variants of interest (VOIs); whole-genome sequencing is then performed on a selection of viruses based on partial sequencing results. Two hundred one nasopharyngeal specimens collected during the decreasing phase of a high-transmission COVID-19 wave in Tunisia were analyzed. The results reveal high genetic variability within the sequenced fragment and allow the detection of first introductions in the country of already-known VOCs and VOIs, as well as other variants that have interesting genomic mutations and need to be kept under surveillance. IMPORTANCE The method of choice for SARS-CoV-2 variant detection is whole-genome sequencing using next-generation sequencing (NGS) technologies. Resources for this technology remain limited in many low- and middle-income countries, where it is not possible to perform whole-genome sequencing for representative numbers of SARS-CoV-2-positive cases. In the present work, we developed a novel strategy based on a first partial Sanger screening in the S gene, which includes key mutations of the already known VOCs and VOIs, for rapid identification of these VOCs and VOIs and to help better select specimens that need to be sequenced by NGS technologies. The second step consists of whole-genome sequencing to allow a holistic view of all variants within the selected viral strains and confirm the initial classification of the strains based on partial S gene sequencing.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Base Sequence , COVID-19/transmission , COVID-19 Testing/methods , Child , Child, Preschool , Female , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Mutation , Phylogeny , Serogroup , Tunisia , Whole Genome Sequencing , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...