Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(14): 6370-6382, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38547380

ABSTRACT

The reaction of preassembled Cu(I) bimetallic units {Cu2(dppm)2} and {Cu2(dppa)2} (dppm: bis(diphenylphosphino)methane and dppa: bis(diphenylphosphino)amine) with pseudohalide linkers (azido, dicyanamide, and tricyanomethanide) allows for the quantitative and selective preparation of three discrete tetrametallic metallacycles of formula [Cu4(µ2-dppm)4(N3)2](PF6)2, [Cu4(µ2-dppm)4(N(CN)2)2](PF6)2, and [Cu4(µ2-dppm)4(C(CN)3)4]. To explore further the impact of the linker on the architecture and dimensionality of the molecular edifice, the study was extended to more sophisticated tetradentate cyanocarbanion ligands (tcnsMe-: 2-(methylthio)-1,1,3,3-propanetetracarbonitrile and tcnsEt-: 2-(ethylthio)-1,1,3,3-propanetetracarbonitrile). Three ladder-like one-dimensional coordination polymers and an octametallic metallacycle have been obtained. The careful comparison of the metric and geometrical intramolecular and intermolecular parameters observed in this series of seven derivatives allows for rationalization of their molecular architectures. The subtle balance between the length and steric hindrance of the ligand and the formation of noncovalent interaction networks greatly influences the topology and dimensionality of the resulting assemblies and will be discussed hereafter. The photophysical properties of these seven polymetallic Cu(I) compounds have also been also studied.

2.
Inorg Chem ; 60(9): 6536-6549, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33843234

ABSTRACT

Two new mononuclear Fe(II) polymorphs, [(C2H5)4N]2[Fe(py3C-OEt)(NCS)3]2 (1) and [(C2H5)4N][Fe(py3C-OEt)(NCS)3] (2) (py3C-OEt = tris(pyridin-2-yl)ethoxymethane), have been synthesized and characterized by single-crystal X-ray diffraction, by magnetic and photomagnetic measurements, and by detailed variable-temperature infrared spectroscopy. The molecular structure, in both complexes, is composed of the same anionic [Fe(py3C-OEt)(NCS)3]- complex (two units for 1 and one unit for 2) generated by coordination to the Fe(II) metal center of one tridentate py3C-OEt tripodal ligand and three terminal κN-SCN coligands. Magnetic studies revealed that polymorph 2 displays a high-spin (HS) state over the entire studied temperature range (300-10 K), while complex 1 exhibits an abrupt and complete spin crossover (SCO) transition at ca. 132.3 K, the structural characterizations of which, performed at 295 and 100 K, show a strong modification, resulting from the thermal evolutions of the Fe-N bond lengths and of the distortion parameters (∑ and Θ) of the FeN6 coordination sphere, in agreement with the presence of HS and low-spin (LS) states at 295 and 100 K, respectively. This thermal transition has been also confirmed by the thermal evolution of the maximum absorbance for ν(NCS) vibrational bands recorded in the temperature range 200-10 K. In 1 the signature of a metastable photoinduced HS state has been observed using photomagnetic and photoinfrared spectroscopy, leading to a similar T(LIESST) relaxation temperature (LIESST = light-induced excited spin-state trapping) of 70 K.

3.
Chem Sci ; 10(28): 6791-6798, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31391900

ABSTRACT

We present a new example of a mononuclear iron(ii) complex exhibiting a correlated spin-crossover (SCO) transition and strong fluorescence, whose coordination sphere is saturated, for the first time, by six phosphorescent ligands. The interplay between SCO and light emission properties in the thermal region of the spin transition was investigated by means of magnetic, fluorescence, optical absorption and optical microscopy measurements on a single crystal. Overall, the results show an excellent correlation between fluorescence and magnetic data of the present gradual transition, indicating an extreme sensitivity of the optical activity of the ligand to the spin state of the active iron(ii) ions. These results open the way for conceiving new prototypes of pressure and temperature sensors based on this synergy between SCO and luminescence properties. In particular, the fact that cooperative SCO material is not a prerequisite for obtaining such synergetic effects, is useful for the design of thin films or nanoparticles, in which the cooperativity is reduced, for appropriate implementation in nanosized devices to enhance the sensing properties at the nanoscale.

4.
Inorg Chem ; 57(19): 12338-12346, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30207469

ABSTRACT

We present here a novel example of spin crossover phenomenon on a Fe(II) one-dimensional chain with unusual N5S coordination sphere. The [{Fe(tpc-OMe)(NCS)(µ-NCS)} n] (1) compound was prepared using the tridentate tpc-OMe ligand (tpc-OMe = tris(2-pyridyl)methoxymethane), FeCl2·4H2O, and the KSCN salt. Crystallographic investigations revealed that the Fe(II) ions are connected by a single bridging NCS- ligand (µ-κN:κS-SCN coordination mode) to afford a zigzag neutral chain running along the [010] direction, in which the thiocyanato bridging groups adopt a cis head-to-tail configuration. The (N5S) metal environment arises from one thiocyanato-κS and two thiocyanato-κN ligands and from three pyridine of the fac-tpc-OMe tripodal ligand. This compound presents a unique extension of Fe(II) binuclear complexes into linear chains built on similar tripodal ligands and bridging thiocyanate anions. Compound 1 shows a spin crossover (SCO) behavior which has been evidenced by magnetic, calorimetric, and structural investigations, revealing a sharp cooperative spin transition with a transition temperature of ca. 199 K. Temperature scan rate studies revealed a very narrow hysteresis loop (∼1 K wide). Photoswitching of this compound was also performed, evidencing a very fast relaxation process at low temperature. Among other factors, the linearity of the N-bound terminal thiocyanato ligand appears as the main structural characteristic at the origin of the presence of the SCO transition in compound 1 and in the two others Fe(II) previous systems involving thiocyanato-bridges and tripodal tris(2-pyridyl)methane ligands.

5.
Phys Chem Chem Phys ; 20(15): 10142-10154, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29589626

ABSTRACT

We investigated by means of optical microscopy (OM) the spatiotemporal features of the thermo-induced spin transition of [Fe(2-pytrz)2{Pd(CN)4}]·3H2O (1) (2-pytrz = 4-(2-pyridyl)-1,2,4,4H-triazole) single crystals having two different shapes (triangle and rectangle). While magnetic and calorimetric measurements, performed on a polycrystalline material, showed the respective average heating and cooling transition temperatures of (Tdown1/2 ∼ 152 K, Tup1/2 ∼ 154 K) and (Tdown1/2 ∼ 160.0 K, Tup1/2 ∼ 163.5 K), OM studies performed on a unique single crystal revealed significantly different switching temperatures (Tdown1/2 ∼ 152 K and Tup1/2 ∼ 162 K). OM investigations showed an interface spreading over all crystals during the spin transition. Thanks to the color contrast between the low-spin (LS) and the high-spin (HS) states, we have been able to follow the real time dynamics of the spin transition between these two spin states, as well as access the thermal hysteresis loop of each single crystal. After image processing, the HS-LS interface's velocity was carefully estimated in the ranges [4.4-8.5] µm s-1 and [2.5-5.5] µm s-1 on cooling and heating, respectively. In addition, we found that the velocity of the interface is shape-dependent, and accelerates nearby the crystal's borders. Interestingly, we observed that during the propagation process, the interface optimizes its shape so as to minimize the excess of elastic energy arising from the lattice parameter misfit between the LS and HS phases. All of these original experimental results are well reproduced using a spatiotemporal model based on the description of the spin-crossover problem as a reaction diffusion phenomenon.

6.
Inorg Chem ; 57(4): 2184-2192, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29420016

ABSTRACT

A new dinuclear complex [{Fe(tpc-OBn)(NCS)(µ-NCS)}2] (1) based on the tripodal tpc-OBn ligand (tpc-OBn = tris(2-pyridyl)benzyloxymethane), containing bridging µ-κN:κS-SCN and terminal κN-SCN thiocyanate ligands, has been prepared and characterized by single crystal X-ray diffraction, magnetic studies, and DFT theoretical calculations. This complex represents the first example of dinuclear FeII complex with double µ-κN:κS-SCN bridges in a head-to-tail configuration that exhibits ferromagnetic coupling between metal ions (JFeFe = +1.08 cm-1). Experimental and theoretical magnetostructural studies on this kind of infrequent FeII dinuclear complex containing a centrosymmetrically [Fe2(µ-SCN)2] bridging fragment show that the magnitude and sign of the magnetic coupling parameter, JFeFe, depend to a large extent on the Fe-N-C (α) angle, so that JFeFe decreases linearly when α decreases. The calculated crossover point below which the magnetic interactions change from ferromagnetic to antiferromagnetic is found at 162.3°. In addition, experimental results obtained in this work and those reported in the literature suggest that large Ntripodal-FeII distances and bent N-bound terminal κN-SCN ligands favor the high spin state of the FeII ions, while short Ntripodal-FeII distances and almost linear Fe-N-C angles favor a stronger ligand field, which enables the FeII ions to show spin crossover (SCO) behavior.

7.
Dalton Trans ; 46(31): 10469-10483, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28752869

ABSTRACT

Triple stranded Ni-metallacyclic complexes Na2.5[Ni2(bpcb)3]·0.5OH·18.5H2O (1) and Na2[Ni2(bpzcb)3]·16H2O (2), and double stranded Cu-metallacyclic complexes [Cu2(bpcb)2(H2O)2]·8H2O (3) and [Cu2(bpzcb)2(H2O)2]·4H2O (4) have been assembled from the tailored bisbidentate bridging ligands, 1,3-bis(pyrimidine-2-carboxamide)benzene (H2bpcb) and 1,3-bis(pyrazine-2-carboxamide)benzene (H2bpzcb), and the corresponding nitrate salts of the metal ions. Following the "complex as ligand" strategy, 1 can be assembled with either Ni2+, Co2+ ions or the [Mn(acen)Cl] complex to afford unique, neutral, bent trinuclear molecules [MIINi(bpcb)3]·xH2O (5 and 6) and the 2D honeycomb-like complex (PPh4){[Ni2(bpcb)3]2[Mn(acen)]3} (7), respectively. In these cases, the Ni2 units are linked to the corresponding metal ions through amidate oxygen atoms and the outward nitrogen atom of one of the pyrimidine rings of the bcpb ligand. The assembly of 2 with Ln3+ ions (Ln3+ = Tb, Gd) leads to one dimensional complexes of formula [{[Ni2(bpzcb)3]Tb(H2O)5}(CF3SO3)·THF·5H2O]n (8) and [{[Ni2(bpzcb)3]Ln(H2O)4(NO3)}·2THF·nH2O]n (9 and 10) (Ln3+ = Gd and Tb), where the dinuclear Ni2 units are joined to two Ln3+ ions exclusively through amidate oxygen atoms of two different ligands. The analyses of the magnetic data indicate that 1-4 exhibit intradinuclear ferromagnetic interactions between the metal ions through a spin polarisation mechanism, as supported by DFT calculations. Trinuclear complexes 5 and 6 show predominant antiferromagnetic coupling, which is a result of an antiferromagnetic interaction between one of the Ni2+ ions of the Ni2 unit and the M2+ ion through the pyrimidine bridging fragment that is stronger than the polarised ferromagnetic interaction between the Ni2+ ions through the bpcb ligand in the dinuclear [Ni2(bpcb)3]2- moiety. Complex 7 shows a dominant antiferromagnetic interaction between the Ni2+ and Mn2+, whereas the Ni2Ln (Ln3+ = Gd, Tb) chain complexes present ferromagnetic interactions inside the Ni2 mesocate unit as well as between the Ni2+ ions of the Ni2 unit and the Ln3+ ions. The magnetic exchange interactions in these new materials have been experimentally analysed and supported by theoretical DFT studies.

8.
Chem Commun (Camb) ; 53(59): 8356-8359, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28696451

ABSTRACT

We report a triazole-based trinuclear complex as the first example that displays a complete one-step first-order [HS-HS-HS] ↔ [LS-LS-LS] spin transition at 318 K. The strong ferro-elastic interactions, between the three metal centers, have been identified as the source of the concerted spin transition in this trinuclear complex.

9.
Inorg Chem ; 55(17): 9038-46, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27526047

ABSTRACT

Spin-crossover (SCO) Fe(II) dinuclear complexes of formula [Fe2(tmpa)2(µ2-tcpd)2]·0.8(CH3OH) (1·MeOH) and [Fe2(andmpa)2(µ2-tcpd)2]·2CH3OH (2·MeOH) (tmpa = tris(2-pyridylmethyl)amine, andmpa = bis(2-pyridylmethyl)aminomethyl)aniline, (tcpd)(2-) = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide) have been synthesized and characterized by infrared spectroscopy, X-ray diffraction, and magnetic measurements. The crystal structure determinations of the two complexes (1·MeOH and 2·MeOH) and the desolvated complex 1 (from 1·MeOH) revealed a neutral centrosymmetrical dinuclear structure in which the (tcpd)(2-) cyanocarbanion acts as a double µ2-bridging ligand between two [FeL](2+) (L = tmpa (1), andmpa (2)) units involving two free coordination sites in the cis configuration. Examination of the shortest intermolecular contacts in 1·MeOH and 1 reveals no significant hydrogen bonding between the dinuclear units, while in 2·MeOH these units are held together by significant hydrogen bonds between one of the uncoordinated nitrile groups and the anilate function, giving rise to 1D supramolecular structure. The three dinuclear complexes 1, 2·MeOH, and 2 exhibit SCO behaviors which have been evidenced by the thermal evolutions of the χmT product and by the average values of the six Fe-N distances for 1 and 2·MeOH, that reveal a gradual conversion with transition temperatures (T1/2) at ca. 352 K (1), 196 K (2), and 180 K (2·MeOH). For the solvated 1·MeOH, the sharp SCO transition observed around 365 K was induced by the desolvatation process above 330 K during the magnetic measurements.

10.
Inorg Chem ; 55(22): 11652-11661, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27439895

ABSTRACT

We report a two-dimensional Hofmann-like spin-crossover (SCO) material, [Fe(trz-py)2{Pt(CN)4}]·3H2O, built from [FePt(CN)4] layers separated by interdigitated 4-(2-pyridyl)-1,2,4,4H-triazole (trz-py) ligands with two symmetrically inequivalent FeII sites. This compound exhibits an incomplete first-order spin transition at 153 K between fully high-spin (HS-HS) and intermediate high-spin low-spin (HS-LS) ordered states. At low temperature, it undergoes a bidirectional photoswitching to HS-HS and fully low-spin (LS-LS) states with green and near-IR light irradiation, respectively, with associated T(LIESST = Light-Induced Excited Spin-State Trapping) and T(reverse-LIESST) values of 52 and 85 K, respectively. Photomagnetic investigations show that the reverse-LIESST process, performed from either HS-HS or HS-LS states, enables access to a hidden stable LS-LS state, revealing the existence of a hidden thermal hysteresis. Crystallographic investigations allowed to identify that the strong metastability of the HS-LS state originates from the existence of a strong elastic frustration causing antiferroelastic interactions within the [FePt(CN)4] layers, through the rigid NC-Pt-CN bridges connecting the inequivalent FeII sites. The existence of the stable LS-LS state paves the way for a multidirectional photoswitching and allows potential applications for electronic devices based on ternary digits.

11.
Inorg Chem ; 53(1): 97-104, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24358979

ABSTRACT

New Fe(II) coordination polymeric neutral chains of formula [Fe(aqin)2(µ2-M(CN)4)] (M = Ni(II) (1) and Pt(II) (2)) (aqin = Quinolin-8-amine) have been synthesized and characterized by infrared spectroscopy, X-ray diffraction, and magnetic measurements. The crystal structure determinations of 1-2 reveal in both cases a one-dimensional structure in which the planar [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion acts as a µ2-bridging ligand, and the two aqin molecules as chelating coligands. Examination of the intermolecular contacts in the two compounds reveals that the main contacts are ascribed to hydrogen bonding interactions involving the amine groups of the aqin chelating ligands and the nitrogen atoms of the two non bridging CN groups of the [M(CN)4](2-) (M = Ni(II) (1) and Pt(II) (2)) anion. The average values of the six Fe-N distances observed respectively at room temperature (293 K) and low temperature (120 K), that is, 2.142(3) and 2.035(2) Å for 1, and 2.178(3) and 1.990(2) Å for 2, and the thermal variation of the cell parameters (performed on 2) are indicative of the presence of an abrupt HS-LS spin crossover (SCO) transition in both compounds. The thermal dependence of the product of the molar magnetic susceptibility times the temperature (χmT), in cooling and warming modes, confirms the SCO behavior at about 145 and 133 K in 1 and 2, respectively, and reveals the presence of a small thermal hysteresis of about 2 K for each compound.

12.
Dalton Trans ; 42(6): 2238-53, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23104234

ABSTRACT

New dinucleating ligands based on two tripodal tris(2-pyridylmethyl)amine (TMPA) units linked by a series of delocalized π-electrons spacers have been synthesized. Their di-Cu(II) complexes have been prepared and structurally characterized. As compared to the corresponding monotopic complexes, these dinuclear Cu(II) complexes reveal spectroscopic and voltammetric features ascribable to weakly perturbed electronic interactions. In the case of the anthracenyl spacer, observation both in the solid and in solution suggests that the existence of intramolecular π-π stacking interactions influences the geometry of the complex and hence its electronic properties. The bis-Cu(I) complexes were prepared electrochemically. In the specific case of the complex bearing a mono-alkyne spacer, addition of dioxygen in acetonitrile leads to the slow formation of a trans-µ-1,2 peroxo Cu(2) complex which shows good stability at 268 K (t(1/2) = 240 s). Analysis of the kinetics of the peroxo formation by UV-vis spectroscopy suggests that the increased activation barrier for intramolecular binding of dioxygen is due to the rigidity of the spacer.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Oxygen/chemistry , Pyridines/chemistry , Acetonitriles/chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Electrochemical Techniques , Kinetics , Molecular Conformation
13.
Inorg Chem ; 51(4): 2359-65, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22296602

ABSTRACT

The use of the recently prepared polynitrile ligand tcnopr3OH(-) ([(NC)(2)CC(OCH(2)CH(2)CH(2)OH)C(CN)(2)](-)) with different salts of Fe(II), Co(II), and Ni(II) has led to a very rare example of linkage isomerism in a coordination chain. These pairs of linkage isomers can be formulated as [M(tcnopr3OH-κN,κO)(2)(H(2)O)(2)]; M = Fe (1), Co (3), and Ni(5) and [M(tcnopr3OH-κN,κN')(2)(H(2)O)(2)]; M = Fe (2), Co (4), and Ni (6). Compounds 1-2, 3-4, and 5-6 are three pairs of linkage isomers since they present the same formula and chain structure and they only differ in the connectivity of the polynitrile ligand bridging the metal ions in the chain: through a N and an O atom (1κN:2κO-isomer) or through two N atoms (1κN:2κN'-isomer). The magnetic properties show, as expected, very similar behaviors for both isomers.

14.
Inorg Chem ; 49(20): 9358-68, 2010 Oct 18.
Article in English | MEDLINE | ID: mdl-20849107

ABSTRACT

A new iron(II) chain of formula [Fe(abpt)(2)(tcpd)] [1; (tcpd)(2-) = [C(10)N(6)](2-) = (C[C(CN)(2)](3))(2-) = 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide anion, abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole] has been synthesized and characterized by IR spectroscopy, detailed variable-temperature single-crystal X-ray diffraction, magnetic and photomagnetic measurements. The crystal structure determination of 1 reveals a one-dimensional structural architecture in which the (tcpd)(2-) cyanocarbanion acts as a µ(2)-bridging ligand and the two abpt molecules act as chelating ligands. Detailed X-ray diffraction studies as a function of the temperature (293-10 K) showed a strong modification of the iron coordination sphere, whose characteristics are in agreement with the presence of a spin-crossover transition from high spin (HS) to low spin (LS) in 1. The average Fe-N distances at room temperature, at 10 K following a flash cooling, and at 10 K after subsequent HS-to-LS relaxation are in the range expected for 100%, 50%, and 25% fractions of HS Fe(II), respectively. These observations are consistent with the presence of ca. 25% residual HS species at low temperatures, as derived from the magnetic data. The signature of a photoinduced metastable HS state in 1 has been detected by performing coupled photomagnetic and photocrystallographic analyses. The limiting T(LIESST) value associated with the light-induced excited-spin-state trapping effect was derived as 35 K, in good agreement with the thermal dependence of the unit cell volume upon irradiation. Kinetic studies governing the photoinduced HS/LS process have been recorded at different temperatures; a reverse-LIESST effect has been evidenced at 10 K as a reduction of the residual HS fraction by irradiating the sample at 830 nm.

15.
Inorg Chem ; 48(21): 10416-23, 2009 Nov 02.
Article in English | MEDLINE | ID: mdl-19780566

ABSTRACT

New iron(II) complexes of formula [Fe(L1)](BF(4))(2) (1) and [Fe(L2)](BF(4))(2) x H(2)O (2) (L1 = 1,7-bis(2'-pyridylmethyl)-1,4,7,10-tetraazacyclododecane; L2 = 1,8-bis(2'-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by infrared spectroscopy, variable-temperature single-crystal X-ray diffraction, and variable-temperature magnetic susceptibility measurements. The crystal structure determinations of 1 and 2 reveal in both cases discrete iron(II) monomeric structures in which the two functionalized tetraazamacrocycles (L1 and L2) act as hexadentate ligands; the iron(II) ions are coordinated with six nitrogen atoms: four from the macrocycle and two from two pyridine groups occupying two cis positions around the metal ion. In 1, the N-Fe-N bond angles indicate that the Fe(II) ion adopts an unusual distorted trigonal prismatic geometry. In agreement with the observed paramagnetic behavior, the average of the six Fe-N distances at 293 K (2.218(6) A) and at 90 K (2.209(2) A) correspond well with distances observed for high-spin (HS) Fe(II) complexes with a coordination index of 6. For 2, the Fe(II) ion adopts a distorted octahedral geometry for which the six Fe-N distances (average 2.197(4) A) at room temperature are in the range expected for HS Fe(II) complexes. The crystal structure solved at 90 K showed a strong modification of the iron coordination sphere, suggesting the presence of a spin-crossover transition from HS to low spin (LS). Surprisingly, the averaged Fe-N value (2.077(4) A) at this temperature is not in agreement with the magnetic measurements since the chi(m)T product versus T showed a full LS state at 90 K. This may be explained by the presence of important distortions arising from the macrocycle constraints. To understand how the crystal and the lattice parameters were affected by the magnetic transition, the temperature dependence of the lattice parameters of 2 was determined in the range 293-90 K: the a and b parameters show essentially linear and gradual decreases, while the c and beta parameters show dramatic decreases nearly similar to that observed in the magnetic behavior.

16.
Chem Commun (Camb) ; (23): 3404-6, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503885

ABSTRACT

A new polymeric approach, based on cyanocarbanion ligands, for the design of spin crossover (SCO) compounds led us to the compound [Fe(abpt)(2)(tcpd)] () (tcpd(2-) = (C[C(CN)(2)](3))(2-), abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) which has been characterised as the first SCO molecular chain involving a cyanocarbanion as bridging ligand.

17.
Inorg Chem ; 48(4): 1269-71, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19166286

ABSTRACT

An original magnetic bistability and a thermochromic transition are observed in a new Cu(II) molecular chain. Thermal structural studies reveal changes in the Cu(II) coordination sphere, driven by a more pronounced Jahn-Teller effect at low temperature. These distortions provoke a gradual color change. The structural study at 10 K shows a dimerization of the molecular chain, in agreement with the abrupt magnetic transition observed at 30 K.

18.
Inorg Chem ; 47(19): 8921-31, 2008 Oct 06.
Article in English | MEDLINE | ID: mdl-18686945

ABSTRACT

New iron(II) complexes of formulas [Fe(abpt) 2(tcm) 2] ( 1), [Fe(abpt) 2(tcnome) 2] ( 2), and [Fe(abpt) 2(tcnoet) 2] ( 3) (abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, tcm (-) = [C(CN) 3] (-) = tricyanomethanide anion; tcnome (-) = [(NC) 2CC(OCH 3)C(CN) 2] (-) = 1,1,3,3-tetracyano-2-methoxypropenide anion; tcnoet (-) = [(NC) 2CC(OC 2H 5)C(CN) 2] (-) = 1,1,3,3-tetracyano-2-ethoxypropenide anion) have been synthesized and characterized by infrared spectroscopy, magnetic properties and by variable-temperature single-crystal X-ray diffraction. The crystal structure determinations of 1 and 2 reveal in both cases centrosymmetric discrete iron(II) monomeric structures in which two abpt chelating ligands stand in the equatorial plane and two terminal polynitrile ligands complete the distorted octahedral environment in trans positions. For 3, the crystallographic studies revealed two polymorphs, 3- A and 3- B, exhibiting similar discrete molecular structures to those found for 1 and 2 but with different molecular arrangements. In agreement with the variable-temperature single-crystal X-ray diffraction, the magnetic susceptibility measurements, performed in the temperature range 2-400 K, showed a spin-crossover phenomenon above room temperature for complexes 1, 3- A, and 3- B with a T 1/2 of 336, 377, and 383 K, respectively, while complex 2 remains in the high-spin ground state ( S = 2) in the whole temperature range. To understand further the magnetic behaviors of 1, 3-A, and 3-B, single-crystal X-ray diffraction measurements were performed at high temperatures. The crystal structures of both polymorphs could not be obtained above 400 K because the crystals decomposed. However, single-crystal X-ray data have been collected for compound 1, which reaches the full high-spin state at lower temperatures. Its crystal structure, solved at 400 K, showed a strong modification of the iron coordination sphere (average Fe-N = 2.157(3) A vs 1.986(3) A at 293 K). In agreement with the magnetic properties. Such structural behavior is a signature of the spin-state transition from low-spin (LS) to high-spin (HS). On the basis of the intermolecular pi stacking observed for the series described in this paper and for related complexes involving similar discrete structures, we have shown that complexes displaying frontal pi stacking present spin transition such as 1, 3-A, and 3-B and those involving sideways pi stacking such as complex 2 remain in the HS state.

19.
Inorg Chem ; 44(15): 5501-8, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-16022548

ABSTRACT

Reaction of NaN(3) with the [Cu(II)(tn)](2+) ion (tn = 1,3-diaminopropane) in basic aqueous solution yields the azido-bridged complex of formula [Cu(2)(tn)(2)(N(3))(4)] (1), which is characterized by X-ray crystallography. The structure of 1 is made up of dinuclear neutral complexes, of formula [Cu(2)(tn)(2)(N(3))(4)], resulting from the assembling of two mononuclear units through two equivalent end-on azide bridges connecting asymmetrically two Cu(tn)(N(3))(2) entities. These dinuclear units are connected through two asymmetric end-to-end N(3) bridges to form a chain of dimers. Magnetic measurements for compound 1 show weak antiferromagnetic exchange interactions between the Cu(II) ions. The magnetic data were modeled using the susceptibility expression derived for an alternating AF S = 1/2 chain. A very satisfactory fit over the whole temperature range was obtained with g = 2.1438(4), J(1) = -3.71(2) cm(-1), and J(2) = -3.10(2) cm(-1) (J(1) and J(2) are the singlet-triplet separations). This magnetic behavior differs from those observed for similar examples which were reported as having alternating ferro- and antiferromagnetic exchange interactions; thus, DFT calculations were done to understand the nature of the magnetic coupling in such asymmetric end-on and end-to-end N(3) bridges. Theoretical results show that the double asymmetric end-on bridges produce antiferromagnetic coupling while the end-to-end ones can present ferro- or antiferromagnetic coupling depending on the copper coordination sphere.


Subject(s)
Azides/chemistry , Copper/chemistry , Iron/chemistry , Magnetics , Organometallic Compounds/chemistry , Crystallography, X-Ray , Models, Chemical , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Temperature
20.
Inorg Chem ; 44(11): 4086-93, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15907138

ABSTRACT

Reactions between CuCl2 and K2tcpd (tcpd2- = [C10N6]2- = (C[C(CN)2]3)2-) in the presence of neutral co-ligands (bpym = 2,2'-bipyrimidine, and tn = 1,3-diaminopropane) in aqueous solution yield the new compounds [Cu2(bpym)(tcpd)2(H2O)4] x 2H2O (1), [Cu(tn)(tcpd)] (2), and [Cu(tn)2(tcpd)] x H2O (3), which are characterized by X-ray crystallography and magnetic measurements. Compound 1 displays a one-dimensional structure in which the bpym ligand, acting with a bis-chelating coordination mode, leads to [Cu2(bpym)]4+ dinuclear units which are connected by two mu2-tcpd2- bridging ligands. Compound 2 consists of a three-dimensional structure generated by [Cu(tn)]2+ units connected by a mu4-tcpd2- ligand. The structure of 3 is made up of centrosymmetric planar [Cu(tn)]2+ units connected by a mu2-tcpd2- ligand leading to infinite zigzag chains. In compounds 1 and 3, the bridging coordination mode of the tcpd2- unit involves only two nitrogen atoms of one C(CN)2 wing, while in 2, this ligand acts via four nitrogen atoms of two C(CN)2 wings. Despite this difference, the structural features of the tcpd2- units in 1-3 are essentially similar. Magnetic measurements for compound 1 exhibit a maximum in the chi(m) vs T plot (at approximately 150 K) which is characteristic of strong antiferromagnetic exchange interactions between the Cu(II) metal ions dominated by the magnetic exchange through the bis-chelating bpym. The fit of the magnetic data to a dimer model gives J and g values of -90.0 cm(-1) and 2.12, respectively. For compounds 2 and 3 the thermal variations of the magnetic susceptibility show weak antiferromagnetic interactions between the Cu(II) metal ions that can be well reproduced with an antiferromagnetic regular S = 1/2 chain model that gives J values of -0.07(2) and -0.18(1) cm(-1) with g values of 2.12(1) and 2.13(1) for compounds 2 and 3, respectively (the Hamiltonian is written in all the cases as H = -2JS(a)S(b)).

SELECTION OF CITATIONS
SEARCH DETAIL
...