Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 42(20): 6274-83, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-14514302

ABSTRACT

The manganese compounds [Mn(bpia)(OAc)(OCH(3))](PF(6)) (1), [Mn(bipa)(OAc)(OCH(3))](PF(6)) (2), [Mn(bpia)(Cl)(2)](ClO(4)) (3), [Mn(bipa)(Cl)(2)](ClO(4)) (4), [Mn(Hmimppa)(Cl)(2)] x CH(3)OH (5), and [Mn(mimppa)(TCC)] x 2CHCl(3) (6) (bpia = bis(picolyl)(N-methylimidazole-2-yl)amine; bipa = bis(N-methylimidazole-2-yl)(picolyl)amine; Hmimppa = ((1-methylimidazole-2-yl)methyl)((2-pyridyl)methyl)(2-hydroxyphenyl)amine; TCC = tetrachlorocatechol) were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR, EPR, and UV/vis spectroscopy, cyclic voltammetry, and elemental analysis. 1 and 2 crystallize in the triclinic space group Ponemacr; (No. 2), 4 and 6 crystallize in the monoclinic space group P2(1)/n (No. 14), and 5 crystallizes in the orthorhombic space group Pna2(1). Complexes 1-4 are structurally related to the proposed active site of the manganese-dependent extradiol-cleaving catechol dioxygenase exhibiting an N(4)O(2) donor set (1 and 2) or N(4)Cl(2) donor set (3 and 4). Cyclic voltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. These compounds show high catalytic activity regarding the oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations. The turnover numbers k(cat) = (86 +/- 7) h(-1) (1), k(cat) = (101 +/- 4) h(-1) (2), k(cat) = (230 +/- 4) h(-1) (3), and k(cat) = (130 +/- 4) h(-1) (4) were determined from the double reciprocal Lineweaver-Burk plot. Compounds 5 and 6 can be regarded as structural and electronic Mn analogues for substituted forms of Fe-containing intradiol-cleaving catechol dioxygenases. To our knowledge 5 is the first mononuclear Mn(II) compound featuring an N(3)OCl(2) donor set.


Subject(s)
Catechols/chemistry , Manganese Compounds/chemistry , Catalysis , Crystallography, X-Ray , Electrochemistry , Kinetics , Mass Spectrometry , Models, Molecular , Oxidation-Reduction
2.
Inorg Chem ; 41(21): 5544-54, 2002 Oct 21.
Article in English | MEDLINE | ID: mdl-12377052

ABSTRACT

The series of compounds [Mn(bpia)(mu-OAc)](2)(ClO(4))(2) (1), [Mn(2)(bpia)(2)(muO)(mu-OAc)](ClO(4))(3).CH(3)CN (2), [Mn(bpia)(mu-O)](2)(ClO(4))(2)(PF(6)).2CH(3)CN (3), [Mn(bpia)(Cl)(2)](ClO)(4) (4), and [(Mn(bpia)(Cl))(2)(mu-O)](ClO(4))(2).2CH(3)CN (5) (bpia = bis(picolyl)(N-methylimidazol-2-yl)amine) represents a structural, spectroscopic, and functional model system for manganese catalases. Compounds 3 and 5 have been synthesized from 2 via bulk electrolysis and ligand exchange, respectively. All complexes have been structurally characterized by X-ray crystallography and by UV-vis and EPR spectroscopies. The different bridging ligands including the rare mono-mu-oxo and mono-mu-oxo-mono-mu-carboxylato motifs lead to a variation of the Mn-Mn separation across the four binuclear compounds of 1.50 A (Mn(2)(II,II) = 4.128 A, Mn(2)(III,III) = 3.5326 and 3.2533 A, Mn(2)(III,IV) = 2.624 A). Complexes 1, 2, and 3 are mimics for the Mn(2)(II,II), the Mn(2)(III,III), and the Mn(2)(III,IV) oxidation states of the native enzyme. UV-vis spectra of these compounds show similarities to those of the corresponding oxidation states of manganese catalase from Thermus thermophilus and Lactobacillus plantarum. Compound 2 exhibits a rare example of a Jahn-Teller compression. While complexes 1 and 3 are efficient catalysts for the disproportionation of hydrogen peroxide and contain an N(4)O(2) donor set, 4 and 5 show no catalase activity. These complexes have an N(4)Cl(2) and N(4)OCl donor set, respectively, and serve as mimics for halide inhibited manganese catalases. Cyclovoltammetric data show that the substitution of oxygen donor atoms with chloride causes a shift of redox potentials to more positive values. To our knowledge, complex 1 is the most efficient binuclear functional manganese catalase mimic exhibiting saturation kinetics to date.


Subject(s)
Catalase/chemical synthesis , Algorithms , Catalase/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Kinetics , Models, Molecular , Molecular Mimicry , Protein Conformation , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...