Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 36(8): 1361-1374, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30381997

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) has demonstrated antidepressant efficacy but has limited evidence in depression associated with traumatic brain injury (TBI). Here, we investigate the use of rTMS targeted with individualized resting-state network mapping (RSNM) of dorsal attention network (DAN) and default mode network (DMN) in subjects with treatment-resistant depression associated with concussive or moderate TBI. The planned sample size was 50 with first interim analysis planned at 20, but only 15 were enrolled before the study was terminated for logistical reasons. Subjects were randomized to 20 sessions of bilateral rTMS (4000 left-sided excitatory pulses, 1000 right-sided inhibitory pulses) or sham. Treatment was targeted to the dorsolateral prefrontal cluster with maximal difference between DAN and DMN correlations based on resting-state functional magnetic resonance imaging with individualized RSNM. Mean improvement in the primary outcome, Montgomery-Asberg Depression Rating Scale (MADRS), was 56% ± 14% (n = 9) with active treatment and 27% ± 25% (n = 5) with sham (Cohen's d = 1.43). One subject randomized to sham withdrew before starting treatment. There were no seizures or other significant adverse events. MADRS improvement was inversely correlated with functional connectivity between the right-sided stimulation site and the subgenual anterior cingulate cortex (sgACC; r = -0.68, 95% confidence interval 0.03-0.925). Active treatment led to increased sgACC-DMN connectivity (d = 1.55) and increased sgACC anti-correlation with the left- and right-sided stimulation sites (d = -1.26 and -0.69, respectively). This pilot study provides evidence that RSNM-targeted rTMS is feasible in TBI patients with depression. Given the dearth of existing evidence-based treatments for depression in this patient population, these preliminarily encouraging results indicate that larger controlled trials are warranted.


Subject(s)
Brain Injuries, Traumatic/complications , Brain Mapping/methods , Depressive Disorder, Treatment-Resistant/complications , Depressive Disorder, Treatment-Resistant/therapy , Transcranial Magnetic Stimulation/methods , Adult , Double-Blind Method , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Pilot Projects
2.
Pharmacogenomics ; 19(10): 861-871, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29914292

ABSTRACT

Smoking cessation treatment outcomes may be heavily influenced by genetic variations among smokers. Therefore, identifying specific variants that affect response to different pharmacotherapies is of major interest to the field. In the current study, we systematically review all studies published in or after the year 1990 which examined one or more gene-drug interactions for smoking cessation treatment. Out of 644 citations, 46 articles met the inclusion criteria for the systematic review. We summarize evidence on several genetic polymorphisms (CHRNA5-A3-B4, CYP2A6, DBH, CHRNA4, COMT, DRD2, DRD4 and CYP2B6) and their potential moderating pharamacotherarpy effects on patient cessation efficacy rates. These findings are promising and call for further research to demonstrate the effectiveness of genetic testing in personalizing treatment decision-making and improving outcome.


Subject(s)
Pharmacogenetics/trends , Smoking Cessation , Smoking/genetics , Tobacco Use Disorder/genetics , Cytochrome P-450 CYP2A6/genetics , Genetic Variation , Humans , Nerve Tissue Proteins/genetics , Nicotine/genetics , Nicotine/metabolism , Receptors, Nicotinic/genetics , Smoking/physiopathology , Tobacco Use Disorder/epidemiology , Tobacco Use Disorder/pathology
3.
Neurosci Biobehav Rev ; 47: 336-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218759

ABSTRACT

Mood disorders such as major depressive disorder and bipolar disorder are chronic and recurrent illnesses that cause significant disability and affect approximately 350 million people worldwide. Currently available biogenic amine treatments provide relief for many and yet fail to ameliorate symptoms for others, highlighting the need to diversify the search for new therapeutic strategies. Here we present recent evidence implicating the role of N-methyl-D-aspartate receptor (NMDAR) signaling in the pathophysiology of mood disorders. The possible role of NMDARs in mood disorders has been supported by evidence demonstrating that: (i) both BPD and MDD are characterized by altered levels of central excitatory neurotransmitters; (ii) NMDAR expression, distribution, and function are atypical in patients with mood disorders; (iii) NMDAR modulators show positive therapeutic effects in BPD and MDD patients; and (iv) conventional antidepressants/mood stabilizers can modulate NMDAR function. Taken together, this evidence suggests the NMDAR system holds considerable promise as a therapeutic target for developing next generation drugs that may provide more rapid onset relief of symptoms. Identifying the subcircuits involved in mood and elucidating the role of NMDARs subtypes in specific brain circuits would constitute an important step toward the development of more effective therapies with fewer side effects.


Subject(s)
Bipolar Disorder/drug therapy , Bipolar Disorder/metabolism , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Excitatory Amino Acid Antagonists/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Antidepressive Agents/therapeutic use , Antimanic Agents/therapeutic use , Bipolar Disorder/etiology , Depressive Disorder, Major/etiology , Humans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
4.
Neurosci Biobehav Rev ; 37(8): 1363-79, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23707776

ABSTRACT

Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Dopamine/metabolism , Neurons/metabolism , Serotonin/metabolism , Alzheimer Disease/pathology , Brain/pathology , Humans , Neural Pathways/metabolism , Neural Pathways/pathology , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...