Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 3113, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813823

ABSTRACT

Possible interactions of the neuropeptide oxytocin and the sex hormone estradiol may contribute to previously observed sex-specific effects of oxytocin on resting-state functional connectivity (rsFC) of the amygdala and hippocampus. Therefore, we used a placebo-controlled, randomized, parallel-group functional magnetic resonance imaging study design and measured amygdala and hippocampus rsFC in healthy men (n = 116) and free-cycling women (n = 111), who received estradiol gel (2 mg) or placebo before the intranasal administration of oxytocin (24 IU) or placebo. Our results reveal significant interaction effects of sex and treatments on rsFC of the amygdala and hippocampus in a seed-to-voxel analysis. In men, both oxytocin and estradiol significantly decreased rsFC between the left amygdala and the right and left lingual gyrus, the right calcarine fissure, and the right superior parietal gyrus compared to placebo, while the combined treatment produced a significant increase in rsFC. In women, the single treatments significantly increased the rsFC between the right hippocampus and the left anterior cingulate gyrus, whereas the combined treatment had the opposite effect. Collectively, our study indicates that exogenous oxytocin and estradiol have different region-specific effects on rsFC in women and men and that the combined treatment may produce antagonistic effects.


Subject(s)
Estradiol , Oxytocin , Male , Humans , Female , Oxytocin/pharmacology , Estradiol/pharmacology , Gyrus Cinguli , Amygdala , Hippocampus , Magnetic Resonance Imaging/methods
2.
Neuroimage ; 264: 119689, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36349596

ABSTRACT

Considerable evidence supports sex differences in episodic memory. The hormones estradiol and oxytocin both affect episodic memory and may contribute to these sex differences, but possible underlying hormonal interactions have not been tested in a sample involving both sexes. To this end, we conducted a randomized, placebo-controlled, parallel-group functional magnetic resonance imaging (fMRI) study including healthy free-cycling women (n = 111) and men (n = 115). The fMRI session was conducted under four experimental conditions: 1. transdermal estradiol (2 mg) and intranasal oxytocin (24 IU), 2. transdermal placebo and intranasal oxytocin, 3. transdermal estradiol and intranasal placebo, 4. transdermal placebo and intranasal placebo. Participants were scanned during the encoding of positive, neutral, and negative scenes. Recognition memory was tested three days following the scanning sessions without additional treatments. Under placebo, women showed a significantly better recognition memory and increased hippocampal responses to subsequently remembered items independent of the emotional valence compared to men. The separate treatments with either hormone significantly diminished this mnemonic sex difference and reversed the hippocampal activation pattern. However, the combined treatments produced no significant effect. Collectively, the results suggest that both hormones play a crucial role in modulating sex differences in episodic memory. Furthermore, possible antagonistic interactions between estradiol and oxytocin could explain previously observed opposing hormonal effects in women and men.


Subject(s)
Memory, Episodic , Oxytocin , Female , Humans , Male , Oxytocin/pharmacology , Sex Characteristics , Estradiol/pharmacology , Emotions/physiology , Administration, Intranasal , Magnetic Resonance Imaging , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...