Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12102, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802427

ABSTRACT

Recently, the possibility to reproduce complex continuous acoustic signals via pulsed laser-plasma sound sources was demonstrated. This was achieved by optoacoustic transduction of dense laser pulse trains, modulated via single- or multi-bit Sigma-Delta, in the air or on solid targets. In this work, we extend the laser-sound concept to amplitude modulation techniques. Particularly, we demonstrate the possibility of transcoding audio streams directly into acoustic pulse streams by analog pulsed amplitude modulation. For this purpose, an electro-optic modulator is used to achieve pulse-to-pulse amplitude modulation of the laser radiation, similarly to the multi-level Sigma-Delta method. The modulator is directly driven by the analog input stream through an audio interface. The performance of the system is evaluated at a proof-of-principle level for the reproduction of test audio signals such as single tones, double tones and sine sweeps, within a limited frequency range of the audible spectrum. The results are supported by computational simulations of the reproduced acoustic signals using a linear convolution model that takes as input the audio signal and the laser-generated acoustic pulse profile. The study shows that amplitude modulation allows for significant relaxation of the laser repetition rate requirements compared to the Sigma-Delta-based implementation, albeit at the potential cost of increased distortion of the reproduced sound signal. The nature of the distortions is analyzed and a preliminary experimental and computational investigation for their suppression is presented.

2.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903120

ABSTRACT

The combustion of metal fuels as energy carriers in a closed-cycle carbon-free process is a promising approach for reducing CO2 emissions in the energy sector. For a possible large-scale implementation, the influence of process conditions on particle properties and vice versa has to be well understood. In this study, the influence of different fuel-air equivalence ratios on particle morphology, size and degree of oxidation in an iron-air model burner is investigated by means of small- and wide-angle X-ray scattering, laser diffraction analysis and electron microscopy. The results show a decrease in median particle size and an increase in the degree of oxidation for leaner combustion conditions. The difference of 1.94 µm in median particle size between lean and rich conditions is twentyfold greater than the expected amount and can be connected to an increased intensity of microexplosions and nanoparticle formation for oxygen-rich atmospheres. Furthermore, the influence of the process conditions on the fuel usage efficiency is investigated, yielding efficiencies of up to 0.93. Furthermore, by choosing a suitable particle size range of 1 to 10 µm, the amount of residual iron content can be minimized. The results emphasize that particle size plays a key role in optimizing this process for the future.

3.
Energy Fuels ; 36(7): 4094-4106, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35431431

ABSTRACT

Numerical simulations have been conducted for a novel double-concentric swirl burner, which is specifically designed for combustion of sulfur with a high power density. The burner serves as a major component of an enclosed conversion cycle, which uses elemental sulfur as a carbon-free chemical energy carrier for storing solar energy. The focus of the work is to assess operability of the burner and NO x formation at fuel-lean conditions with an equivalence ratio of ϕ = 0.5, which is crucial regarding flame stabilization and evaporation. To quantitatively evaluate the NO x formation, a new reaction mechanism for sulfur combustion along with S/N/O and NO x reactions has been developed and used for the simulation. In comparison to our previous simulations using a higher ϕ, the flame is lifted slightly and the overall flame temperature is lowered in the current case, leading to a weakened evaporation performance. Accordingly, an increased share of sulfur droplets hitting the chamber wall and escaping the domain has been confirmed. The local NO x share has been shown to increase strongly with the flame temperature from a threshold value of approximately 1600 K. In addition, the NO x formation from the burner setup with a high swirl intensity (HSI) has been shown to be 2 times higher than that with a low swirl intensity (LSI). This is attributed to a higher flame temperature and longer residence time caused by a strong inner recirculation flow. However, the HSI setup yields a better evaporation performance and a reinforced flame stabilization. The results reveal a trade-off for operating the sulfur burner with different burner designs and equivalence ratios.

4.
Sci Rep ; 11(1): 476, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483555

ABSTRACT

This work presents a novel laser-based optoacoustic transducer capable of reproducing controlled and continuous sound of arbitrary complexity in the air or on solid targets. Light-to-sound transduction is achieved via laser-induced breakdown, leading to the formation of plasma acoustic sources in any desired spatial location. The acoustic signal is encoded into pulse streams via a discrete-time audio modulation and is reproduced by fast consecutive excitation of the target medium with appropriately modulated laser pulses. This results in the signal being directly reconstructed at the desired location of the target medium without the need for a receiver or demodulation device. In this work, the principles and evaluation results of such a novel laser-sound prototype system are presented. The performance of the prototype is evaluated by systematic experimental measurements of audio test signals, from which the basic acoustical response is derived. Moreover, a generic computational model is presented that allows for the simulation of laser-sound reproduction of 1-bit or multibit audio streams. The model evaluations are validated by comparison with the acoustic measurements, whereby a good agreement is found. Finally, the computational model is used to simulate an ideal optoacoustic transducer based on the specifications of state-of-the-art commercially available lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...