Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 114(9): 096402, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793832

ABSTRACT

Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.


Subject(s)
Calcium Compounds/chemistry , Copper/chemistry , Models, Theoretical , Oxides/chemistry , Anisotropy , Electrons
2.
Phys Rev Lett ; 110(18): 186401, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23683224

ABSTRACT

We present high-resolution angle-resolved photoemission spectra of the heavy-fermion superconductor URu2Si2. Detailed measurements as a function of both photon energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low-energy electronic structure across the "hidden order" transition. Above the transition, our measurements reveal the existence of weakly dispersive states that exhibit a large scattering rate and do not appear to shift from above to below the Fermi level, as previously reported. Upon entering the hidden order phase, these states rapidly hybridize with light conduction band states and transform into a coherent heavy fermion liquid, coincident with a dramatic drop in the scattering rate. This evolution is in stark contrast with the gradual crossover expected in Kondo lattice systems, which we attribute to the coupling of the heavy fermion states to the hidden order parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...