Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Nanotechnol ; 11(6): 1038-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26353593

ABSTRACT

Although gold nanoparticles have been shown to exhibit a range of beneficial biological properties, including antiinflammatory and anti-oxidant effects, their putative impact on allergic asthma has not been addressed. In this study, we evaluated the potential of nasal-instilled gold nanoparticles to prevent allergen-induced asthma in distinct murine models of this disease. Swiss-Webster (outbred) and A/J (inbred) mice were sensitized with ovalbumin and then treated with intranasal injections of gold nanoparticles (6 and 60 µg/kg), 1 h before ovalbumin challenges. Lung function, leukocyte infiltration, mucus exacerbation, extracellular matrix deposition, cytokine generation and oxidative stress were evaluated 24 h after the last challenge. In both mice strains, gold nanoparticles clearly inhibited (70-100%) allergen-induced accumulation of inflammatory cells as well as the production of both pro-inflammatory cytokines and reactive oxygen species. In A/J mice, recognized as genetic asthma prone animals, instilled gold nanoparticles clearly prevented mucus production, peribronchiolar fibrosis and airway hyper-reactivity triggered by allergen provocation. In conclusion, these findings demonstrate that gold nanoparticles prevented pivotal features of asthma, including airway hyper-reactivity, inflammation and lung remodelling. Such protective effects are accounted for by reduction in lung tissue generation of pro-inflammatory cytokines and chemokines, in a mechanism probably related to down-regulation in the levels of oxidative stress.


Subject(s)
Asthma/pathology , Asthma/prevention & control , Gold/administration & dosage , Metal Nanoparticles/administration & dosage , Pneumonia/prevention & control , Animals , Asthma/metabolism , Disease Models, Animal , Disease Progression , Injections, Intralesional , Male , Mice , Neutrophil Infiltration , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
2.
J Colloid Interface Sci ; 439: 154-61, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25463188

ABSTRACT

A set of seven different palladium nanoparticle (PdNP) systems stabilized by small amounts (1.0mg/mL) of structurally related macromolecular capping agents were comparatively tested as catalyst in p-nitrophenol (Nip) reduction and Suzuki cross-coupling reactions. The observed rate constants (kobs) for Nip reduction were in the range of 0.052-3.120×10(-2)s(-1), and the variation reflected the effects of polymer chain conformation, ionic strength and palladium-polymer complex coordination. Macromolecules featuring pendant pyridyl moieties or inverse temperature-dependent solubility were found to be unsuitable capping agents for PdNPs catalysts, despite being active. The catalytic activity in Suzuki cross-coupling reactions followed the same behavior; the most active particles in the Nip reaction also mediated the cross-coupling reaction providing the expected products in quantitative yields under relatively mild conditions after only 4h at 50°C. Experiments involving the successive addition of reactants and catalyst recovery/re-use indicated that the recycling potential was comparable to those of the standards used in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...