Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1274740, 2023.
Article in English | MEDLINE | ID: mdl-38152377

ABSTRACT

Introduction: Pseudomonas aeruginosa infections are one of the leading causes of death in immunocompromised patients with cystic fibrosis, diabetes, and lung diseases such as pneumonia and bronchiectasis. Furthermore, P. aeruginosa is one of the main multidrug-resistant bacteria responsible for nosocomial infections worldwide, including the multidrug-resistant CCBH4851 strain isolated in Brazil. Methods: One way to analyze their dynamic cellular behavior is through computational modeling of the gene regulatory network, which represents interactions between regulatory genes and their targets. For this purpose, Boolean models are important predictive tools to analyze these interactions. They are one of the most commonly used methods for studying complex dynamic behavior in biological systems. Results and discussion: Therefore, this research consists of building a Boolean model of the gene regulatory network of P. aeruginosa CCBH4851 using data from RNA-seq experiments. Next, the basins of attraction are estimated, as these regions and the transitions between them can help identify the attractors, representing long-term behavior in the Boolean model. The essential genes of the basins were associated with the phenotypes of the bacteria for two conditions: biofilm formation and polymyxin B treatment. Overall, the Boolean model and the analysis method proposed in this work can identify promising control actions and indicate potential therapeutic targets, which can help pinpoint new drugs and intervention strategies.

2.
Sci Rep ; 10(1): 13192, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764694

ABSTRACT

Pseudomonas aeruginosa is one of the most common pathogens related to healthcare-associated infections. The Brazilian isolate, named CCBH4851, is a multidrug-resistant clone belonging to the sequence type 277. The antimicrobial resistance mechanisms of the CCBH4851 strain are associated with the presence of the bla[Formula: see text] gene, encoding a metallo-beta-lactamase, in combination with other exogenously acquired genes. Whole-genome sequencing studies focusing on emerging pathogens are essential to identify key features of their physiology that may lead to the identification of new targets for therapy. Using both Illumina and PacBio sequencing data, we obtained a single contig representing the CCBH4851 genome with annotated features that were consistent with data reported for the species. However, comparative analysis with other Pseudomonas aeruginosa strains revealed genomic differences regarding virulence factors and regulatory proteins. In addition, we performed phenotypic assays that revealed CCBH4851 is impaired in bacterial motilities and biofilm formation. On the other hand, CCBH4851 genome contained acquired genomic islands that carry transcriptional factors, virulence and antimicrobial resistance-related genes. Presence of single nucleotide polymorphisms in the core genome, mainly those located in resistance-associated genes, suggests that these mutations may also influence the multidrug-resistant behavior of CCBH4851. Overall, characterization of Pseudomonas aeruginosa CCBH4851 complete genome revealed the presence of features that strongly relates to the virulence and antibiotic resistance profile of this important infectious agent.


Subject(s)
Genomics , Phenotype , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , beta-Lactamases/biosynthesis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genome, Bacterial/genetics , Genomic Islands/genetics , Polymorphism, Single Nucleotide , Pseudomonas aeruginosa/drug effects
3.
Biosystems ; 162: 119-127, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28970020

ABSTRACT

The regulation of metabolic networks has been shown to be distributed and shared through the action of metabolic cycles. Biochemical cycles play important roles in maintaining flux and substrate availability for multiple pathways to supply cellular energy and contribute to dynamic stability. By understanding the cyclic and acyclic flows of matter through a network, we are closer to understanding how complex dynamic systems distribute flux along interconnected pathways. In this work, we have applied a cycle decomposition algorithm to a genome-scale metabolic model of Chlamydomonas reinhardtii to analyse how acetate supply affects the distribution of fluxes that sustain cellular activity. We examined the role of metabolic cycles which explain the down regulation of photosynthesis that is observed when cells are grown in the presence of acetate. Our results suggest that acetate modulates changes in global metabolism, with the pentose phosphate pathway, the Calvin-Benson cycle and mitochondrial respiration activity being affected whilst reducing photosynthesis. These results show how the decomposition of metabolic flux into cyclic and acyclic components helps to understand the impact of metabolic cycling on organismal behaviour at the genome scale.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Down-Regulation , Metabolic Networks and Pathways/physiology , Photosynthesis/physiology , Acetates/metabolism , Algorithms , Carbon Cycle , Chlamydomonas reinhardtii/genetics , Gene Expression Regulation, Plant , Genome, Plant/genetics , Metabolic Networks and Pathways/genetics , Models, Biological , Photosynthesis/genetics
4.
J Theor Biol ; 265(3): 250-60, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20435049

ABSTRACT

Metabolic networks are among the most widely studied biological systems. The topology and interconnections of metabolic reactions have been well described for many species. This is, however, not sufficient to understand how their activity is regulated in living organisms. These descriptions depict a static set of possible chains of reactions, with no information about the dynamic activity of reaction fluxes. Cyclic structures are thought to play a central role in the homeostasis of biological systems and in their resilience to a changing environment. In this work, we present a methodology to help investigating dynamic fluxes associated to biochemical reactions in metabolic networks. We introduce an algorithm for partitioning fluxes between cyclic and acyclic sub-networks, adapted from an algorithm initially developed to study fluxes in trophic networks. Using this algorithm, we analyse three metabolic systems: the central metabolism of wild type and a deletion mutant of Escherichia coli, erythrocyte metabolism and the central metabolism of the bacterium Methylobacterium extorquens. This methodology unveils the role of cycles in driving and maintaining metabolic fluxes under perturbations in these examples, and may be used to further investigate and understand the organisational invariance of biological systems.


Subject(s)
Algorithms , Biochemical Phenomena , Homeostasis/physiology , Metabolic Networks and Pathways/physiology , Models, Biological , Computer Simulation , Erythrocytes/metabolism , Escherichia coli/metabolism , Humans , Methylobacterium extorquens/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...