Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 370(3): 786-795, 2019 09.
Article in English | MEDLINE | ID: mdl-30936291

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a leading monogenetic cause of end-stage renal disease with limited therapeutic repertoire. A targeted drug delivery strategy that directs a small molecule to renal niches around cysts could increase the safety margins of agents that slow the progression of ADPKD but are poorly tolerated due to extrarenal toxicity. Herein, we determined whether previously characterized lysine-based and glutamic acid-based megalin-binding peptides can achieve renal-specific localization in the juvenile cystic kidney (JCK) mouse model of polycystic kidney disease and whether the distribution is altered compared with control mice. We performed in vivo optical and magnetic resonance imaging studies using peptides conjugated to the VivoTag 680 dye and demonstrated that megalin-interacting peptides distributed almost exclusively to the kidney cortex in both normal and JCK mice. Confocal analysis demonstrated that the peptide-dye conjugate distribution overlapped with megalin-positive renal proximal tubules. However, in the JCK mouse, the epithelium of renal cysts did not retain expression of the proximal tubule markers aquaporin 1 and megalin, and therefore these cysts did not retain peptide-dye conjugates. Furthermore, human kidney tumor tissues were evaluated by immunohistochemistry and revealed significant megalin expression in tissues from patients with renal cell carcinoma, raising the possibility that these tumors could be treated using this drug delivery strategy. Taken together, our data suggest that linking a small-molecule drug to these carrier peptides could represent a promising opportunity to develop a new platform for renal enrichment and targeting in the treatment of ADPKD and certain renal carcinomas.


Subject(s)
Drug Delivery Systems/methods , Kidney/drug effects , Peptides/administration & dosage , Polycystic Kidney Diseases/drug therapy , Animals , Aquaporin 1/metabolism , Coloring Agents , Drug Design , Epithelium/metabolism , Glutamic Acid/chemistry , Humans , Kidney Cortex/diagnostic imaging , Kidney Cortex/metabolism , Kidney Neoplasms/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Lysine/chemistry , Magnetic Resonance Imaging , Mice , Peptides/chemistry , Peptides/pharmacokinetics , Polycystic Kidney Diseases/diagnostic imaging , Tissue Distribution
2.
J Neurochem ; 108(2): 384-96, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19012743

ABSTRACT

The 5-HT(3) receptor is a member of the 'Cys-loop' family of ligand-gated ion channels that mediate fast excitatory and inhibitory transmission in the nervous system. Current evidence points towards native 5-HT(3) receptors originating from homomeric assemblies of 5-HT(3A) or heteromeric assembly of 5-HT(3A) and 5-HT(3B). Novel genes encoding 5-HT(3C), 5-HT(3D), and 5-HT(3E) have recently been described but the functional importance of these proteins is unknown. In the present study, in silico analysis (confirmed by partial cloning) indicated that 5-HT(3C), 5-HT(3D), and 5-HT(3E) are not human-specific as previously reported: they are conserved in multiple mammalian species but are absent in rodents. Expression profiles of the novel human genes indicated high levels in the gastrointestinal tract but also in the brain, Dorsal Root Ganglion (DRG) and other tissues. Following the demonstration that these subunits are expressed at the cell membrane, the functional properties of the recombinant human subunits were investigated using patch clamp electrophysiology. 5-HT(3C), 5-HT(3D), and 5-HT(3E) were all non-functional when expressed alone. Co-transfection studies to determine potential novel heteromeric receptor interactions with 5-HT(3A) demonstrated that the expression or function of the receptor was modified by 5-HT(3C) and 5-HT(3E), but not 5-HT(3D). The lack of distinct effects on current rectification, kinetics or pharmacology of 5-HT(3A) receptors does not however provide unequivocal evidence to support a direct contribution of 5-HT(3C) or 5-HT(3E) to the lining of the ion channel pore of novel heteromeric receptors. The functional and pharmacological contributions of these novel subunits to human biology and diseases such as irritable bowel syndrome for which 5-HT(3) receptor antagonists have major clinical usage, therefore remains to be fully determined.


Subject(s)
Biological Evolution , Protein Subunits/physiology , Receptors, Serotonin, 5-HT3/chemistry , Receptors, Serotonin, 5-HT3/physiology , Animals , Cell Line, Transformed , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Electric Stimulation/methods , Ferrets , GABA Antagonists/pharmacology , Green Fluorescent Proteins/genetics , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Patch-Clamp Techniques/methods , Picrotoxin/pharmacology , Rabbits , Serotonin/pharmacology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...