Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Curr Biol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38878771

ABSTRACT

The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.

2.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333217

ABSTRACT

Bacteriophage lambda tunes its propensity to lysogenize based on the number of viral genome copies inside the infected cell. Viral self-counting is believed to serve as a way of inferring the abundance of available hosts in the environment. This interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). However, here we show this premise to be untrue. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, followed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of individual phage entries decrease with MOI. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage landing, evidenced by compromised membrane integrity and loss of membrane potential. The dependence of phage entry dynamics on the surrounding medium is found to result in a strong impact of environmental conditions on the infection outcome, while the protracted entry of co-infecting phages increases the cell-to-cell variability in infection outcome at a given MOI. Our findings demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.

3.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215782

ABSTRACT

In this study, we examined the effect of a bacteriophage cocktail (tentatively designated as the Foodborne Outbreak Pill (FOP)) on the levels of Listeria monocytogenes in simulated small intestine, large intestine, and Caco-2 model systems. We found that FOP survival during simulated passage of the upper gastrointestinal was dependent on stomach pH, and that FOP robustly inhibited L. monocytogenes levels with effectiveness comparable to antibiotic treatment (ampicillin) under simulated ilium and colon conditions. The FOP did not inhibit the commensal bacteria, whereas ampicillin treatment led to dysbiosis-like conditions. The FOP was also more effective than an antibiotic in protecting Caco-2 cells from adhesion and invasion by L. monocytogenes (5-log reduction vs. 1-log reduction) while not triggering an inflammatory response. Our data suggested that the FOP may provide a robust protection against L. monocytogenes should the bacterium enter the human gastrointestinal tract (e.g., by consumption of contaminated food), without deleterious impact on the commensal bacteria.


Subject(s)
Bacteriophages/physiology , Gastrointestinal Microbiome , Listeria monocytogenes/virology , Listeriosis/therapy , Phage Therapy , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Humans , Intestines/microbiology , Listeria monocytogenes/physiology , Listeriosis/microbiology
4.
Microbiol Spectr ; 9(1): e0049721, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34431719

ABSTRACT

Nontyphoidal Salmonella bacteria are the causative agent of salmonellosis, which accounts for the majority of foodborne illness of bacterial etiology in humans. Here, we demonstrate the safety and efficacy of the prophylactic administration of a bacteriophage preparation termed FOP (foodborne outbreak pill), which contains lytic phages targeting Salmonella (SalmoFresh phage cocktail), Shiga toxin-producing Escherichia coli (STEC), and Listeria monocytogenes, for lowering Salmonella burdens in OMM12 gnotobiotic mice. Prophylactic administration of FOP significantly reduced the levels of Salmonella in feces and in intestinal sections compared to the levels in controls. Moreover, the overall symptoms of the disease were also considerably lessened. Dose-dependent administration of FOP showed that phage amplification reached similarly high levels in less than 48 h independent of dose. In addition, 16S rRNA gene analysis showed that FOP did not alter the intestinal microbiota of healthy OMM12 mice and reduced microbiota perturbations induced by Salmonella. FOP maintained its full potency against Salmonella in comparison to that of SalmoFresh, its Salmonella-targeting component phages alone. Altogether, the data support that preventive administration of FOP may offer a safe and effective approach for reducing the risk of foodborne infections caused by Salmonella and, potentially, other foodborne bacteria (namely, STEC and L. monocytogenes) targeted by the FOP preparation. IMPORTANCE Foodborne bacterial infections cause worldwide economic loss. During an epidemic, the use of antibiotics to slow down the spread of the disease is not recommended because of their side effects on the resident microbiota and the selection of antibiotic-resistant bacteria. Here, we investigated the potential for the prophylactic administration of bacteriophages (viruses infecting bacteria) to reduce the burden of Salmonella in vivo using mice colonized by a synthetic microbiota. We found that the repeated administration of bacteriophages was safe and efficient in lowering the Salmonella burden. Perturbations of the microbiota by the Salmonella infection were also reduced when mice received bacteriophages. Altogether, these data support the use of bacteriophages as a prophylactic intervention to lower the spread of foodborne epidemics.


Subject(s)
Phage Therapy , Salmonella Infections/prevention & control , Salmonella typhimurium/virology , Animals , Feces/microbiology , Female , Gastrointestinal Microbiome , Humans , Male , Mice , Mice, Inbred C57BL , Pre-Exposure Prophylaxis , Salmonella Infections/microbiology , Salmonella typhimurium/physiology
5.
Nat Commun ; 11(1): 3813, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732913

ABSTRACT

Spatial organization of biological processes allows for variability in molecular outcomes and coordinated development. Here, we investigate how organization underpins phage lambda development and decision-making by characterizing viral components and processes in subcellular space. We use live-cell and in situ fluorescence imaging at the single-molecule level to examine lambda DNA replication, transcription, virion assembly, and resource recruitment in single-cell infections, uniting key processes of the infection cycle into a coherent model of phage development encompassing space and time. We find that different viral DNAs establish separate subcellular compartments within cells, which sustains heterogeneous viral development in single cells. These individual phage compartments are physically separated by the E. coli nucleoid. Our results provide mechanistic details describing how separate viruses develop heterogeneously to resemble single-cell phenotypes.


Subject(s)
Bacteriophage lambda/genetics , DNA Replication/genetics , Escherichia coli/virology , Virus Assembly/genetics , Bacteriophage lambda/growth & development , DNA, Viral/biosynthesis , DNA, Viral/genetics , Escherichia coli/genetics , Lysogeny/genetics , Transcription, Genetic/genetics
6.
J Biol Chem ; 294(10): 3343-3349, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30242122

ABSTRACT

Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.


Subject(s)
Bacteriophage lambda/physiology , DNA, Viral/metabolism , Lysogeny/physiology , RNA, Viral/metabolism , DNA, Viral/genetics , RNA, Viral/genetics
7.
Trends Microbiol ; 27(1): 3-4, 2019 01.
Article in English | MEDLINE | ID: mdl-30502931

ABSTRACT

There are many strategies by which cell fates are decided. In one intriguing case, viruses communicate via the quorum-sensing-like 'arbitrium' system to bias infection outcomes. Through elucidating the detailed molecular mechanisms of such strategies, we can better understand viral propagation and offer insights into the treatment of viral diseases.


Subject(s)
Bacteriophages , Lysogeny , Virus Latency
8.
iScience ; 6: 1-12, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30240603

ABSTRACT

Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.

9.
Biotechnol Bioeng ; 115(6): 1427-1436, 2018 06.
Article in English | MEDLINE | ID: mdl-29460442

ABSTRACT

Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies.


Subject(s)
Bacteriophages/chemistry , Bacteriophages/physiology , Fluorescent Dyes/chemistry , Host Specificity , Nanodiamonds/chemistry , Bacteriological Techniques/methods , Optical Imaging/methods
10.
Biophys J ; 113(9): 2110-2120, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29117533

ABSTRACT

Gene regulatory networks are largely responsible for cellular decision-making. These networks sense diverse external signals and respond by adjusting gene expression, enabling cells to reach environment-dependent decisions crucial for their survival or reproduction. However, information-carrying signals may arrive at variable times. Besides the intrinsic strength of these signals, their arrival time (timing) may also carry information about the environment and can influence cellular decision-making in ways that are poorly understood. For example, it is unclear how the timing of individual phage infections affects the lysis-lysogeny decision of bacteriophage λ despite variable infection times being likely in the wild and even in laboratory conditions. In this work, we combine mathematical modeling with experimentation to address this question. We develop an experimentally testable theory, which reveals that late-infecting phages contribute less to cellular decision-making. This implies that infection delays lower the probability of lysogeny compared to simultaneous infections. Furthermore, we show that infection delays reduce lysogenization by providing insufficient CII for threshold crossing during the critical decision-making period. We find evidence for a cutoff time after which subsequent infections cannot influence the cellular decision. We derive an intuitive formula that approximates the probability of lysogeny for variable infection times by a time-weighted average of probabilities for simultaneous infections. We validate these theoretical predictions experimentally. Similar concepts and simplifying modeling approaches may help elucidate the mechanisms underlying other cellular decisions.


Subject(s)
Lysogeny , Models, Biological , Signal Transduction , Bacteriophage lambda/physiology , Escherichia coli/cytology , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli/virology , Gene Regulatory Networks , Stochastic Processes
11.
Nat Commun ; 8: 14341, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165024

ABSTRACT

The system of the bacterium Escherichia coli and its virus, bacteriophage lambda, is paradigmatic for gene regulation in cell-fate development, yet insight about its mechanisms and complexities are limited due to insufficient resolution of study. Here we develop a 4-colour fluorescence reporter system at the single-virus level, combined with computational models to unravel both the interactions between phages and how individual phages determine cellular fates. We find that phages cooperate during lysogenization, compete among each other during lysis, and that confusion between the two pathways occasionally occurs. Additionally, we observe that phage DNAs have fluctuating cellular arrival times and vie for resources to replicate, enabling the interplay during different developmental paths, where each phage genome may make an individual decision. These varied strategies could separate the selection for replication-optimizing beneficial mutations during lysis from sequence diversification during lysogeny, allowing rapid adaptation of phage populations for various environments.


Subject(s)
Bacteriophage lambda/genetics , DNA Replication , Escherichia coli/virology , Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Adaptation, Physiological/genetics , Computational Biology , Fluorescence , Genes, Reporter , Lysogeny/genetics , Mutation
12.
Microbiologyopen ; 6(1)2017 02.
Article in English | MEDLINE | ID: mdl-27530202

ABSTRACT

The infection of Escherichia coli cells by bacteriophage lambda results in bifurcated means of propagation, where the phage decides between the lytic and lysogenic pathways. Although traditionally thought to be mutually exclusive, increasing evidence suggests that this lysis-lysogeny decision is more complex than once believed, but exploring its intricacies requires an improved resolution of study. Here, with a newly developed fluorescent reporter system labeling single phage and E. coli DNAs, these two distinct pathways can be visualized by following the DNA movements in vivo. Surprisingly, we frequently observed an interesting "lyso-lysis" phenomenon in lytic cells, where phage integrates its DNA into the host, a characteristic event of the lysogenic pathway, followed by cell lysis. Furthermore, the frequency of lyso-lysis increases with the number of infecting phages, and specifically, with CII activity. Moreover, in lytic cells, the integration site attB on the E. coli genome migrates toward the polar region over time, leading to more spatial overlap with the phage DNA and frequent colocalization/collision of attB and phage DNA, possibly contributing to a higher chance for DNA integration.


Subject(s)
Attachment Sites, Microbiological/genetics , Bacteriophage lambda/genetics , Escherichia coli/virology , Lysogeny/genetics , Virus Integration/genetics , Bacteriophage lambda/growth & development , DNA, Viral/genetics , Escherichia coli/genetics
13.
FEMS Microbiol Lett ; 345(1): 72-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23714007

ABSTRACT

To identify Saccharomyces cerevisiae genes required for the proper timing of cell cycle transitions, we previously reported a systematic examination of the DNA content of homozygous diploid deletion strains. However, deletion strains with complex DNA content profiles were not examined in that study. Here, we report S. cerevisiae genes that when deleted give rise to DNA content profiles consistent with roles of the corresponding gene products during DNA replication. We also identified a set of genes whose deletion leads to increased DNA content, consistent with defects in mitosis, cytokinesis, or cell separation. Finally, we examined known interactions between the gene products of each group, placing these gene products in functional networks. Taken together, the data we present further validate the roles of the corresponding gene products in these processes, facilitating efforts to delineate gene function critical for genome replication, maintenance, and segregation.


Subject(s)
DNA, Fungal/genetics , Gene Deletion , Saccharomyces cerevisiae/genetics , Cell Cycle , DNA Replication , DNA, Fungal/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...