Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open ; 9(12): e031041, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892647

ABSTRACT

INTRODUCTION: For women of the same age and body mass index, increased mammographic density is one of the strongest predictors of breast cancer risk. There are multiple methods of measuring mammographic density and other features in a mammogram that could potentially be used in a screening setting to identify and target women at high risk of developing breast cancer. However, it is unclear which measurement method provides the strongest predictor of breast cancer risk. METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk. ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Mammography , Case-Control Studies , Clinical Protocols , Female , Humans , International Cooperation , Predictive Value of Tests , Risk Assessment/methods
2.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545395

ABSTRACT

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Image Processing, Computer-Assisted/methods , Mammography/methods , Aged , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Case-Control Studies , Female , Humans , Middle Aged , Prognosis , Prospective Studies , Risk Assessment/methods , Risk Factors , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...