Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 64(4): 1168-1177, 2017 Aug.
Article in English | MEDLINE | ID: mdl-26924683

ABSTRACT

A study was conducted between May 2013 and August 2014 in three provinces of Vietnam to investigate financial impacts of swine diseases in pig holdings in 2010-2013. The aim of the study was to quantify the costs of swine diseases at producer level in order to understand swine disease priority for monitoring at local level. Financial impacts of porcine reproductive and respiratory syndrome (PRRS), foot and mouth disease (FMD), and epidemic diarrhoea were assessed for 162 pig holders in two Red River Delta provinces and in one Mekong River Delta province, using data on pig production and swine disease outbreaks at farms. Losses incurred by swine diseases were estimated, including direct losses due to mortality (100% market value of pig before disease onset) and morbidity (abortion, delay of finishing stage), and indirect losses due to control costs (treatment, improving biosecurity and emergency vaccination) and revenue foregone (lower price in case of emergency selling). Financial impacts of swine diseases were expressed as percentage of gross margin of pig holding. The gross margin varied between pig farming groups (P < 0.0001) in the following order: large farm (USD 18 846), fattening farm (USD 7014) and smallholder (USD 2350). The losses per pig holding due to PRRS were the highest: 41% of gross margin for large farm, 38% for fattening farm and 63% for smallholder. Cost incurred by FMD was lower with 19%, 25% and 32% of gross margin of pig holding in large farm, fattening farm and smallholder, respectively. The cost of epidemic diarrhoea was the lowest compared to losses due to PRRS and FMD and accounted for around 10% of gross margin of pig holding in the three pig farming groups. These estimates provided critical elements on swine disease priorities to better inform surveillance and control at both national and local level.


Subject(s)
Animal Husbandry/economics , Farms/economics , Swine Diseases/economics , Animals , Female , Male , Swine , Vietnam
2.
J Mol Biol ; 269(2): 176-87, 1997 Jun 06.
Article in English | MEDLINE | ID: mdl-9191063

ABSTRACT

Imperfect inverted repeats or quasipalindromes can undergo spontaneous, often complex mutational events that correct them to perfect palindromes. Two models that depend on the quasipalindrome providing a template for a specific mutational event have been described to explain this mutation: an intramolecular and an intermolecular strand switch model. A 17bp quasipalindrome containing a -1 deletion within the chloramphenicol acetyl transferase (CAT) gene in plasmid pJT7 undergoes a spontaneous +1 frameshift mutation that creates a perfect inverted repeat and a Cm(r) phenotype. By analyzing this mutation frequency in two plasmids that contain the CAT gene in either orientation with respect to the origin of replication, we show that the specific frameshift occurs preferentially in the leading strand during DNA replication. Due to the availability and proximity of the lagging strand template as a single strand during replication of the quasipalindrome in the leading but not lagging strand, we suggest that the specificity for the leading strand correction is due to a leading strand specific intermolecular strand switch rather than an intramolecular strand switch. To test this hypothesis, we have designed a genetic selection to detect a leading strand intermolecular strand switch. This selection utilizes asymmetric quasipalindromes, one of which contains two central stop codons. When cloned into the CAT gene in pJT7, reversion to Cm(r) requires inversion of the stop codons and addition of a +1 frameshift to correct the reading frame. The inversion of the central stop codons, which is predicted by an intermolecular but not an intramolecular strand switch, occurs concomitant with the specific correction of the original 17 bp quasipalindrome. Inversion of an asymmetric center can also be demonstrated when not under selective pressure using a quasipalindrome lacking central stop codons. These results are consistent with the correction of a quasipalindrome occurring predominantly by an intermolecular strand switch during replication of the leading strand.


Subject(s)
Chloramphenicol O-Acetyltransferase/genetics , DNA Replication , Escherichia coli/genetics , Mutagenesis , Repetitive Sequences, Nucleic Acid , Base Sequence , Chloramphenicol Resistance/genetics , DNA Polymerase I/metabolism , DNA, Bacterial/biosynthesis , DNA, Bacterial/genetics , Frameshift Mutation , Models, Genetic , Molecular Sequence Data , Plasmids/genetics
3.
J Bacteriol ; 177(15): 4385-91, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7635823

ABSTRACT

The frequencies of deletion of short sequences (mutation inserts) inserted into the chloramphenicol acetyl-transferase (CAT) gene were measured for pBR325 and pBR523, in which the orientation of the CAT gene was reversed, in Escherichia coli. Reversal of the CAT gene changes the relationship between the transcribed strand and the leading and lagging strands of the DNA replication fork in pBR325-based plasmids. Deletion of these mutation inserts may be mediated by slipped misalignment during DNA replication. Symmetrical sequences, in which the same potential DNA structural misalignment can form in both the leading and lagging strands, exhibited an approximately twofold difference in the deletion frequencies upon reversal of the CAT gene. Sequences that contained an inverted repeat that was asymmetric with respect to flanking direct repeats were designed. With asymmetric mutation inserts, different misaligned structural intermediates could form in the leading and lagging strands, depending on the orientation of the insert and/or of the CAT gene. When slippage could be stabilized by a hairpin in the lagging strand, thereby forming a three-way junction, deletion occurred by up to 50-fold more frequently than when this structure formed in the leading strand. These results support the model that slipped misalignment involving DNA secondary structure occurs preferentially in the lagging strand during DNA replication.


Subject(s)
DNA Replication , Gene Deletion , Nucleic Acid Conformation , Plasmids , Base Sequence , Chloramphenicol O-Acetyltransferase/biosynthesis , Chloramphenicol O-Acetyltransferase/genetics , DNA Transposable Elements , Escherichia coli/chemistry , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Mutagenesis, Site-Directed , Repetitive Sequences, Nucleic Acid
4.
Genetics ; 134(2): 409-22, 1993 Jun.
Article in English | MEDLINE | ID: mdl-8325478

ABSTRACT

We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli/genetics , Multigene Family , Repetitive Sequences, Nucleic Acid , Sequence Deletion , Base Sequence , DNA, Recombinant/genetics , Deoxyribonuclease EcoRI , Molecular Sequence Data , Nucleic Acid Conformation , Plasmids
5.
Nature ; 352(6335): 544-7, 1991 Aug 08.
Article in English | MEDLINE | ID: mdl-1865910

ABSTRACT

When present in single-stranded DNA, palindromic or quasi-palindromic sequences have the potential to form complex secondary structures, including hairpins, which may facilitate interstrand misalignment of direct repeats and be responsible for diverse types of replication-based mutations, including deletions, additions, frameshifts and duplications. In regions of palindromic symmetry, specific deletion events may involve the formation of a hairpin or other DNA secondary structures which can stabilize the misalignment of direct repeats. One model suggests that these deletions occur during DNA replication by slippage of the template strand and misalignment with the progeny strand. The concurrent DNA replication model, involving an asymmetric dimeric DNA polymerase III complex which replicates the leading and lagging strands, has significant implications for mutagenesis. The intermittent looping of the lagging strand template, and the fact that the lagging strand template may contain a region of single-stranded DNA the length of an Okazaki fragment, provides an opportunity for DNA secondary-structure formation and misalignment. Here we report our design of a palindromic fragment to create an 'asymmetric palindromic insert' in the chloramphenicol acetyltransferase gene of plasmid pBR325. The frequency with which the insert was deleted in Escherichia coli depends on the orientation of the gene in the plasmid. Our results suggest that replication-dependent deletion between direct repeats may occur preferentially in the lagging strand.


Subject(s)
DNA Replication , DNA, Bacterial/genetics , Escherichia coli/genetics , Plasmids , Base Sequence , Chromosome Deletion , DNA, Bacterial/chemistry , Molecular Sequence Data , Mutagenesis, Insertional , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...