Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 19(1): 13-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31534013

ABSTRACT

AZD0156 is a potent and selective, bioavailable inhibitor of ataxia-telangiectasia mutated (ATM) protein, a signaling kinase involved in the DNA damage response. We present preclinical data demonstrating abrogation of irradiation-induced ATM signaling by low doses of AZD0156, as measured by phosphorylation of ATM substrates. AZD0156 is a strong radiosensitizer in vitro, and using a lung xenograft model, we show that systemic delivery of AZD0156 enhances the tumor growth inhibitory effects of radiation treatment in vivo Because ATM deficiency contributes to PARP inhibitor sensitivity, preclinically, we evaluated the effect of combining AZD0156 with the PARP inhibitor olaparib. Using ATM isogenic FaDu cells, we demonstrate that AZD0156 impedes the repair of olaparib-induced DNA damage, resulting in elevated DNA double-strand break signaling, cell-cycle arrest, and apoptosis. Preclinically, AZD0156 potentiated the effects of olaparib across a panel of lung, gastric, and breast cancer cell lines in vitro, and improved the efficacy of olaparib in two patient-derived triple-negative breast cancer xenograft models. AZD0156 is currently being evaluated in phase I studies (NCT02588105).


Subject(s)
Ataxia Telangiectasia Mutated Proteins/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Pyridines/therapeutic use , Quinolines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Animals , Ataxia Telangiectasia Mutated Proteins/pharmacology , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Phthalazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/pathology
2.
Sci Adv ; 4(6): eaat1719, 2018 06.
Article in English | MEDLINE | ID: mdl-29938225

ABSTRACT

Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Protein Kinase Inhibitors/pharmacology , Radiation-Sensitizing Agents/pharmacology , Animals , Apoptosis/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Membrane Permeability , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors/chemistry , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/chemistry , Signal Transduction/drug effects , Treatment Outcome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , X-Rays , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 23(24): 7584-7595, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28972046

ABSTRACT

Purpose: PTEN-null tumors become dependent on the PI3Kß isoform and can be targeted by molecules such as the selective PI3Kß inhibitor AZD8186. However, beyond the modulation of the canonical PI3K pathway, the consequences of inhibiting PI3Kß are poorly defined.Experimental Design: To determine the broader impact of AZD8186 in PTEN-null tumors, we performed a genome-wide RNA-seq analysis of PTEN-null triple-negative breast tumor xenografts treated with AZD8186. Mechanistic consequences of AZD8186 treatment were examined across a number of PTEN-null cell lines and tumor models.Results: AZD8186 treatment resulted in modification of transcript and protein biomarkers associated with cell metabolism. We observed downregulation of cholesterol biosynthesis genes and upregulation of markers associated with metabolic stress. Downregulation of cholesterol biosynthesis proteins, such as HMGCS1, occurred in PTEN-null cell lines and tumor xenografts sensitive to AZD8186. Therapeutic inhibition of PI3Kß also upregulated PDHK4 and increased PDH phosphorylation, indicative of reduced carbon flux into the TCA cycle. Consistent with this, metabolomic analysis revealed a number of changes in key carbon pathways, nucleotide, and amino acid biosynthesis.Conclusions: This study identifies novel mechanistic biomarkers of PI3Kß inhibition in PTEN-null tumors supporting the concept that targeting PI3Kß may exploit a metabolic dependency that contributes to therapeutic benefit in inducing cell stress. Considering these additional pathways will guide biomarker and combination strategies for this class of agents. Clin Cancer Res; 23(24); 7584-95. ©2017 AACR.


Subject(s)
Aniline Compounds/administration & dosage , Chromones/administration & dosage , Class II Phosphatidylinositol 3-Kinases/genetics , PTEN Phosphohydrolase/genetics , Triple Negative Breast Neoplasms/drug therapy , Aniline Compounds/adverse effects , Animals , Cell Line, Tumor , Chromones/adverse effects , Female , Gene Expression Regulation, Neoplastic , Humans , Hydroxymethylglutaryl-CoA Synthase/genetics , Metabolic Networks and Pathways/genetics , Mice , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
FEBS J ; 281(17): 3844-54, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25040622

ABSTRACT

Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) is an adaptor protein associated with the cytoskeleton that is mainly expressed in hematopoietic cells. Mutations in PSTPIP1 cause the rare autoinflammatory disease called pyogenic arthritis, pyoderma gangrenosum, and acne. We carried out this study to further our knowledge on PSTPIP1 function in T cells, particularly in relation to the phosphatase lymphoid phosphatase (LYP), which is involved in several autoimmune diseases. LYP-PSTPIP1 binding occurs through the C-terminal homology domain of LYP and the F-BAR domain of PSTPIP1. PSTPIP1 inhibits T-cell activation upon T-cell receptor (TCR) and CD28 engagement, regardless of CD2 costimulation. This function of PSTPIP1 depends on the presence of an intact SH3 domain rather than on the F-BAR domain, indicating that ligands of the F-BAR domain, such as the PEST phosphatases LYP and PTP-PEST, are not critical for its negative regulatory role in TCR signaling. Additionally, PSTPIP1 mutations that cause the pyogenic arthritis, pyoderma gangrenosum and acne syndrome do not affect PSTPIP1 function in T-cell activation through the TCR.


Subject(s)
Acne Vulgaris/genetics , Adaptor Proteins, Signal Transducing/physiology , Arthritis, Infectious/genetics , Cytoskeletal Proteins/physiology , Pyoderma Gangrenosum/genetics , Receptors, Antigen, T-Cell/physiology , src Homology Domains/physiology , Adaptor Proteins, Signal Transducing/genetics , CD28 Antigens/physiology , CD3 Complex/physiology , Cytoskeletal Proteins/genetics , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 22/physiology , Signal Transduction/drug effects , T-Lymphocytes/physiology
5.
J Biol Chem ; 289(1): 122-32, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24220032

ABSTRACT

The control and processing of microRNAs (miRs) is critical in the regulation of all cellular responses. Previous studies have suggested that a reduction in the expression of certain miRs, or an overall decrease in miR processing through the partial depletion of Dicer, can promote enhanced metastatic potential. We show here that Dicer depletion can promote the invasive behavior of cells that is reflected in enhanced recycling and activation of the growth factor receptors Met and EGF receptor. These responses are also seen in response to the expression of tumor-derived mutant p53s, and we show that mutant p53 can down-regulate Dicer expression through both direct inhibition of the TAp63-mediated transcriptional activation of Dicer and a TAp63-independent control of Dicer protein expression. Our results delineate a clear relationship between mutant p53, TAp63, and Dicer that might contribute to the metastatic function of mutant p53 but, interestingly, also reveal TAp63-independent functions of mutant p53 in controlling Dicer activity.


Subject(s)
DEAD-box RNA Helicases/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Mutation , Neoplasms/metabolism , Ribonuclease III/biosynthesis , Transcription Factors/metabolism , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms/genetics , Neoplasms/pathology , Ribonuclease III/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
6.
PLoS One ; 8(1): e54569, 2013.
Article in English | MEDLINE | ID: mdl-23359562

ABSTRACT

The protein tyrosine phosphatase LYP, a key regulator of TCR signaling, presents a single nucleotide polymorphism, C1858T, associated with several autoimmune diseases such as type I diabetes, rheumatoid arthritis, and lupus. This polymorphism changes an R by a W in the P1 Pro rich motif of LYP, which binds to CSK SH3 domain, another negative regulator of TCR signaling. Based on the analysis of the mouse homologue, Pep, it was proposed that LYP and CSK bind constitutively to inhibit LCK and subsequently TCR signaling. The detailed study of LYP/CSK interaction, here presented, showed that LYP/CSK interaction was inducible upon TCR stimulation, and involved LYP P1 and P2 motifs, and CSK SH3 and SH2 domains. Abrogating LYP/CSK interaction did not preclude the regulation of TCR signaling by these proteins.


Subject(s)
Autoimmunity , Protein Tyrosine Phosphatases/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/physiology , src-Family Kinases/physiology , Autoimmune Diseases/genetics , CSK Tyrosine-Protein Kinase , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , HEK293 Cells , Humans , Immunohistochemistry , Jurkat Cells , Models, Molecular , Phosphorylation , Polymorphism, Single Nucleotide , Protein Binding , Protein Tyrosine Phosphatases/physiology
7.
PLoS One ; 4(2): e4431, 2009.
Article in English | MEDLINE | ID: mdl-19221593

ABSTRACT

YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Yersinia pestis/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Cell Line , Humans , Lymphocyte Activation , Protein Binding , Protein Tyrosine Phosphatases/genetics , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Signal Transduction/physiology , Substrate Specificity , T-Lymphocytes/immunology , Yersinia pestis/genetics , Yersinia pestis/pathogenicity
8.
FEBS J ; 275(15): 3900-10, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18573101

ABSTRACT

Potassium channel tetramerization domain (KCTD) proteins contain a bric-a-brac, tramtrak and broad complex (BTB) domain that is most similar to the tetramerization domain (T1) of voltage-gated potassium channels. Some BTB-domain-containing proteins have been shown recently to participate as substrate-specific adaptors in multimeric cullin E3 ligase reactions by recruiting proteins for ubiquitination and subsequent degradation by the proteasome. Twenty-two KCTD proteins have been found in the human genome, but their functions are largely unknown. In this study, we have characterized KCTD5, a new KCTD protein found in the cytosol of cultured cell lines. The expression of KCTD5 was upregulated post-transcriptionally in peripheral blood lymphocytes stimulated through the T-cell receptor. KCTD5 interacted specifically with cullin3, bound ubiquitinated proteins, and formed oligomers through its BTB domain. Analysis of the interaction with cullin3 showed that, in addition to the BTB domain, some amino acids in the N-terminus of KCTD5 are required for binding to cullin3. These findings suggest that KCTD5 is a substrate-specific adaptor for cullin3-based E3 ligases.


Subject(s)
Cullin Proteins/metabolism , Potassium Channels/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Cell Line , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Molecular Sequence Data , Potassium Channels/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...