Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Proteome Res ; 23(6): 2288-2297, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38805445

ABSTRACT

In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.


Subject(s)
Exosomes , Milk , Proteomics , Ultracentrifugation , Animals , Cattle , Exosomes/chemistry , Exosomes/metabolism , Proteomics/methods , Milk/chemistry , Ultracentrifugation/methods , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Milk Proteins/analysis , Milk Proteins/metabolism , Milk Proteins/chemistry , Mass Spectrometry/methods
2.
Analyst ; 148(18): 4438-4446, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37555458

ABSTRACT

A one-step protocol for the automated flow synthesis of protected glycosylated amino acids is described using pumps with open-source controls in overall yields of 21-50%. The resulting glycosylated amino acids could be used directly in solid-phase peptide synthesis (SPPS) protocols to quickly produce glycopeptide standards. Access to a variety of stereoisomers of the sugar enabled the development of an LC-MS/MS protocol that can distinguish between peptides modified with carbohydrates having the same exact mass. This method could definitively identify fucose in an O-glycosylation site on the transmembrane protein, Notch1.


Subject(s)
Glycopeptides , Sugars , Glycopeptides/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Carbohydrates , Amino Acids/chemistry
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902150

ABSTRACT

Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.


Subject(s)
Osteoclasts , Osteocytes , Animals , Female , Mice , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Culture Media, Conditioned/pharmacology , Osteoclasts/metabolism , Osteocytes/metabolism , Sex Characteristics
4.
Nano Today ; 522023 Oct.
Article in English | MEDLINE | ID: mdl-38282661

ABSTRACT

Exosomes, a class of extracellular vesicles of endocytic origin, play a critical role in paracrine signaling for successful cell-cell crosstalk in vivo. However, limitations in our current understanding of these circulating nanoparticles hinder efficient isolation, characterization, and downstream functional analysis of cell-specific exosomes. In this work, we sought to develop a method to isolate and characterize keratinocyte-originated exosomes (hExoκ) from human chronic wound fluid. Furthermore, we studied the significance of hExoκ in diabetic wounds. LC-MS-MS detection of KRT14 in hExoκ and subsequent validation by Vesiclepedia and Exocarta databases identified surface KRT14 as a reliable marker of hExoκ. dSTORM nanoimaging identified KRT14+ extracellular vesicles (EVκ) in human chronic wound fluid, 23% of which were of exosomal origin. An immunomagnetic two-step separation method using KRT14 and tetraspanin antibodies successfully isolated hExoκ from the heterogeneous pool of EV in chronic wound fluid of 15 non-diabetic and 22 diabetic patients. Isolated hExoκ (Ø75-150nm) were characterized per EV-track guidelines. dSTORM images, analyzed using online CODI followed by independent validation using Nanometrix, revealed hExoκ Ø as 80-145nm. The abundance of hExoκ was low in diabetic wound fluids and negatively correlated with patient HbA1c levels. The hExoκ isolated from diabetic wound fluid showed a low abundance of small bp RNA (<200 bp). Raman spectroscopy underscored differences in surface lipids between non-diabetic and diabetic hExoκ Uptake of hExoκ by monocyte-derived macrophages (MDM) was low for diabetics versus non-diabetics. Unlike hExoκ from non-diabetics, the addition of diabetic hExoκ to MDM polarized with LPS and INFγ resulted in sustained expression of iNOS and pro-inflammatory chemokines known to recruit macrophage (mϕ) This work provides maiden insight into the structure, composition, and function of hExoκ from chronic wound fluid thus providing a foundation for the study of exosomal malfunction under conditions of diabetic complications such as wound chronicity.

5.
Front Microbiol ; 13: 1011189, 2022.
Article in English | MEDLINE | ID: mdl-36458192

ABSTRACT

Marine Synechococcus efficiently harvest available light for photosynthesis using complex antenna systems, called phycobilisomes, composed of an allophycocyanin core surrounded by rods, which in the open ocean are always constituted of phycocyanin and two phycoerythrin (PE) types: PEI and PEII. These cyanobacteria display a wide pigment diversity primarily resulting from differences in the ratio of the two chromophores bound to PEs, the green-light absorbing phycoerythrobilin and the blue-light absorbing phycourobilin. Prior to phycobiliprotein assembly, bilin lyases post-translationally catalyze the ligation of phycoerythrobilin to conserved cysteine residues on α- or ß-subunits, whereas the closely related lyase-isomerases isomerize phycoerythrobilin to phycourobilin during the attachment reaction. MpeV was recently shown in Synechococcus sp. RS9916 to be a lyase-isomerase which doubly links phycourobilin to two cysteine residues (C50 and C61; hereafter C50, 61) on the ß-subunit of both PEI and PEII. Here we show that Synechococcus sp. WH8020, which belongs to the same pigment type as RS9916, contains MpeV that demonstrates lyase-isomerase activity on the PEII ß-subunit but only lyase activity on the PEI ß-subunit. We also demonstrate that occurrence of a histidine at position 141 of the PEI ß-subunit from WH8020, instead of a leucine in its counterpart from RS9916, prevents the isomerization activity by WH8020 MpeV, showing for the first time that both the substrate and the enzyme play a role in the isomerization reaction. We propose a structural-based mechanism for the role of H141 in blocking isomerization. More generally, the knowledge of the amino acid present at position 141 of the ß-subunits may be used to predict which phycobilin is bound at C50, 61 of both PEI and PEII from marine Synechococcus strains.

6.
Proc Natl Acad Sci U S A ; 119(49): e2213630119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442121

ABSTRACT

In response to bacterial infection, the vertebrate host employs the metal-sequestering protein calprotectin (CP) to withhold essential transition metals, notably Zn(II), to inhibit bacterial growth. Previous studies of the impact of CP-imposed transition-metal starvation in A. baumannii identified two enzymes in the de novo biosynthesis pathway of queuosine-transfer ribonucleic acid (Q-tRNA) that become cellularly abundant, one of which is QueD2, a 6-carboxy-5,6,7,8-tetrahydropterin (6-CPH4) synthase that catalyzes the initial, committed step of the pathway. Here, we show that CP strongly disrupts Q incorporation into tRNA. As such, we compare the AbQueD2 "low-zinc" paralog with a housekeeping, obligatory Zn(II)-dependent enzyme QueD. The crystallographic structure of Zn(II)-bound AbQueD2 reveals a distinct catalytic site coordination sphere and assembly state relative to QueD and possesses a dynamic loop, immediately adjacent to the catalytic site that coordinates a second Zn(II) in the structure. One of these loop-coordinating residues is an invariant Cys18, that protects QueD2 from dissociation of the catalytic Zn(II) while maintaining flux through the Q-tRNA biosynthesis pathway in cells. We propose a "metal retention" model where Cys18 introduces coordinative plasticity into the catalytic site which slows metal release, while also enhancing the metal promiscuity such that Fe(II) becomes an active cofactor. These studies reveal a complex, multipronged evolutionary adaptation to cellular Zn(II) limitation in a key Zn(II) metalloenzyme in an important human pathogen.


Subject(s)
Acinetobacter baumannii , Nucleoside Q , Humans , Transcription, Genetic , RNA, Transfer/genetics , Metals
7.
Proc Biol Sci ; 289(1982): 20220668, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36100021

ABSTRACT

Coordinating physiological and behavioural processes across the annual cycle is essential in enabling individuals to maximize fitness. While the mechanisms underlying seasonal reproduction and its associated behaviours are well characterized, fewer studies have examined the hormonal basis of non-reproductive social behaviours (e.g. aggression) on a seasonal time scale. Our previous work suggests that the pineal hormone melatonin facilitates a 'seasonal switch' in neuroendocrine regulation of aggression in male and female Siberian hamsters (Phodopus sungorus), specifically by acting on the adrenal glands to increase the production of the androgen dehydroepiandrosterone (DHEA) during the short-day (SD) photoperiods of the non-breeding season. Here, we provide evidence that the activity of 3ß-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3ß-HSD), a key enzyme within the steroidogenic pathway that mediates DHEA synthesis and metabolism, varies in a sex-specific and melatonin-dependent manner. Although both male and female hamsters displayed increased aggression in response to SDs and SD-like melatonin, only males showed an increase in adrenal 3ß-HSD activity. Conversely, SD and melatonin-treated females exhibited reductions in both adrenal and neural 3ß-HSD activity. Collectively, these results suggest a potential role for 3ß-HSD in modulating non-breeding aggression and, more broadly, demonstrate how distinct neuroendocrine mechanisms may underlie the same behavioural phenotype in males and females.


Subject(s)
Melatonin , Phodopus , Aggression/physiology , Animals , Cricetinae , Dehydroepiandrosterone/metabolism , Female , Male , Melatonin/metabolism , Phodopus/metabolism , Seasons
8.
Protein Sci ; 31(11): e4454, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36116099

ABSTRACT

Fluorine (19 F) offers several distinct advantages for biomolecular nuclear magnetic resonance spectroscopy such as no background signal, 100% natural abundance, high sensitivity, and a large chemical shift range. Exogenous cysteine-reactive 19 F-probes have proven especially indispensable for characterizing large, challenging systems that are less amenable to other isotopic labeling strategies such as G protein-coupled receptors. As fluorine linewidths are inherently broad, limiting reactions with offsite cysteines is critical for spectral simplification and accurate deconvolution of component peaks-especially when analyzing systems with intermediate to slow timescale conformational exchange. Here, we uncovered noncovalent probe sequestration by detergent proteomicelles as a second source of offsite labeling when using the popular 19 F-probe BTFMA (2-bromo-N-(4-[trifluoromethyl]phenyl)acetamide). The chemical shift and relaxation rates of these unreacted 19 F-BTFMA molecules are insufficient to distinguish them from protein-conjugates, but they can be easily identified using mass spectrometry. We present a simple four-step protocol for Selective Labeling Absent of Probe Sequestration (SLAPS): physically disrupt cell membranes in the absence of detergent, incubate membranes with cysteine-reactive 19 F-BTFMA, remove excess unreacted 19 F-BTFMA molecules via ultracentrifugation, and finally solubilize in the detergent of choice. Our approach builds upon the in-membrane chemical modification method with the addition of one crucial step: removal of unreacted 19 F-probes by ultracentrifugation prior to detergent solubilization. SLAPS is broadly applicable to other lipophilic cysteine-reactive probes and membrane protein classes solubilized in detergent micelles or lipid mimetics.


Subject(s)
Detergents , Fluorine , Detergents/chemistry , Cysteine , Membrane Proteins/chemistry
9.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009332

ABSTRACT

Hydrogen sulfide (H2S) is implicated as a cytoprotective agent that bacteria employ in response to host-induced stressors, such as oxidative stress and antibiotics. The physiological benefits often attributed to H2S, however, are likely a result of downstream, more oxidized forms of sulfur, collectively termed reactive sulfur species (RSS) and including the organic persulfide (RSSH). Here, we investigated the metabolic response of the commensal gut microorganism Enterococcus faecalis to exogenous Na2S as a proxy for H2S/RSS toxicity. We found that exogenous sulfide increases protein abundance for enzymes responsible for the biosynthesis of coenzyme A (CoA). Proteome S-sulfuration (persulfidation), a posttranslational modification implicated in H2S signal transduction, is also widespread in this organism and is significantly elevated by exogenous sulfide in CstR, the RSS sensor, coenzyme A persulfide (CoASSH) reductase (CoAPR) and enzymes associated with de novo fatty acid biosynthesis and acetyl-CoA synthesis. Exogenous sulfide significantly impacts the speciation of fatty acids as well as cellular concentrations of acetyl-CoA, suggesting that protein persulfidation may impact flux through these pathways. Indeed, CoASSH is an inhibitor of E. faecalis phosphotransacetylase (Pta), suggesting that an important metabolic consequence of increased levels of H2S/RSS may be over-persulfidation of this key metabolite, which, in turn, inhibits CoA and acyl-CoA-utilizing enzymes. Our 2.05 Å crystallographic structure of CoA-bound CoAPR provides new structural insights into CoASSH clearance in E. faecalis.

10.
J Am Chem Soc ; 144(23): 10241-10250, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35647863

ABSTRACT

Using a discrete, intracellular 19F nuclear magnetic resonance (NMR) probe on transmembrane helix 6 of the neurotensin receptor 1 (NTS1), we aim to understand how ligands and transducers modulate the receptor's structural ensemble in a solution. For apo NTS1, 19F NMR spectra reveal an ensemble of at least three conformational substates (one inactive and two active-like) in equilibrium that exchange on the millisecond to second timescale. Dynamic NMR experiments reveal that these substates follow a linear three-site exchange process that is both thermodynamically and kinetically remodeled by orthosteric ligands. As previously observed in other G protein-coupled receptors (GPCRs), the full agonist is insufficient to completely stabilize the active-like state. The inactive substate is abolished upon coupling to ß-arrestin-1 (ßArr1) or the C-terminal helix of Gαq, which comprises ≳60% of the GPCR/G protein interface surface area. Whereas ßArr1 exclusively selects for pre-existing active-like substates, the Gαq peptide induces a new substate. Both transducer molecules promote substantial line broadening of active-like states, suggesting contributions from additional microsecond to millisecond exchange processes. Together, our study suggests that (i) the NTS1 allosteric activation mechanism may be alternatively dominated by induced fit or conformational selection depending on the coupled transducer, and (ii) the available static structures do not represent the entire conformational ensemble observed in a solution.


Subject(s)
Receptors, G-Protein-Coupled , Receptors, Neurotensin , Ligands , Membrane Proteins , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, Neurotensin/chemistry , Receptors, Neurotensin/metabolism , Transducers
11.
Anal Chem ; 94(25): 8909-8918, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35699514

ABSTRACT

Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes (Exoκ) leads to persistent inflammation [Zhou, X. ACS Nano 2020, 14(10), 12732-12748]. Herein, we use charge detection mass spectrometry (CDMS) to analyze intact Exoκ isolated from a 5 day old wound-edge tissue of diabetic mice and a heterozygous nondiabetic littermate control group. In CDMS, the charge (z) and mass-to-charge ratio (m/z) of individual exosome particles are measured simultaneously, enabling the direct analysis of masses in the 1-200 MDa range anticipated for exosomes. These measurements reveal a broad mass range for Exoκ from ∼10 to >100 MDa. The m and z values for these exosomes appear to fall into families (subpopulations); a statistical modeling analysis partially resolves ∼10-20 Exoκ subpopulations. Complementary proteomics, immunofluorescence, and electron microscopy studies support the CDMS results that Exoκ from diabetic and nondiabetic mice vary substantially. Subpopulations having high z (>650) and high m (>44 MDa) are more abundant in nondiabetic animals. We propose that these high m and z particles may arise from differences in cargo packaging. The veracity of this idea is discussed in light of other recent CDMS results involving genome packaging in vaccines, as well as exosome imaging experiments. Characterization of intact exosome particles based on the physical properties of m and z provides a new means of investigating wound healing and suggests that CDMS may be useful for other pathologies.


Subject(s)
Diabetes Mellitus, Experimental , Exosomes , Animals , Diabetes Mellitus, Experimental/pathology , Exosomes/pathology , Inflammation , Keratinocytes , Mass Spectrometry , Mice
12.
Curr Biol ; 32(7): 1534-1547.e9, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35240051

ABSTRACT

The initiation of the cell division process of meiosis requires exogenous signals that activate internal gene regulatory networks. Meiotic commitment ensures the irreversible continuation of meiosis, even upon withdrawal of the meiosis-inducing signals. A loss of meiotic commitment can cause highly abnormal polyploid cells and can ultimately lead to germ cell tumors. Despite the importance of meiotic commitment, only a few genes involved in commitment are known. In this study, we have discovered six new regulators of meiotic commitment in budding yeast: the Bcy1 protein involved in nutrient sensing, the meiosis-specific kinase Ime2, Polo kinase Cdc5, RNA-binding protein Pes4, and the 14-3-3 proteins Bmh1 and Bmh2. Decreased levels of these proteins cause a failure to establish or maintain meiotic commitment. Importantly, we found that Bmh1 and Bmh2 are involved in multiple processes throughout meiosis and in meiotic commitment. First, cells depleted of both Bmh1 and Bmh2 trigger the pachytene checkpoint, likely due to a role in DNA double-strand break repair. Second, Bmh1 interacts directly with the middle meiosis transcription factor Ndt80, and both Bmh1 and Bmh2 maintain Ndt80 levels. Third, Bmh1 and Bmh2 bind to Cdc5 and enhance its kinase activity. Finally, Bmh1 binds to Pes4, which regulates the timing of the translation of several mRNAs in meiosis II and is required to maintain meiotic commitment. Our results demonstrate that meiotic commitment is actively maintained throughout meiosis, with the 14-3-3 proteins and Polo kinase serving as key regulators of this developmental program.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Meiosis , Protein Serine-Threonine Kinases/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism
13.
Nat Commun ; 13(1): 359, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042867

ABSTRACT

Single-stranded DNA (ssDNA) commonly occurs as intermediates in DNA metabolic pathways. The ssDNA binding protein, RPA, not only protects the integrity of ssDNA, but also directs the downstream factor that signals or repairs the ssDNA intermediate. However, it remains unclear how these enzymes/factors outcompete RPA to access ssDNA. Using the budding yeast Saccharomyces cerevisiae as a model system, we find that Dna2 - a key nuclease in DNA replication and repair - employs a bimodal interface to act with RPA both in cis and in trans. The cis-activity makes RPA a processive unit for Dna2-catalyzed ssDNA digestion, where RPA delivers its bound ssDNA to Dna2. On the other hand, activity in trans is mediated by an acidic patch on Dna2, which enables it to function with a sub-optimal amount of RPA, or to overcome DNA secondary structures. The trans-activity mode is not required for cell viability, but is necessary for effective double strand break (DSB) repair.


Subject(s)
DNA Helicases/metabolism , DNA, Fungal/metabolism , DNA, Single-Stranded/metabolism , Replication Protein A/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biocatalysis , Cell Survival/drug effects , DNA Breaks, Double-Stranded , DNA Repair , Models, Biological , Mutation/genetics , Peptides/metabolism , Phleomycins/pharmacology , Protein Binding , Protein Domains , Saccharomyces cerevisiae Proteins/chemistry , Tyrosine/metabolism
14.
Glycobiology ; 32(3): 201-207, 2022 03 30.
Article in English | MEDLINE | ID: mdl-34939082

ABSTRACT

A substantial shortcoming of large-scale datasets is often the inability to easily represent and visualize key features. This problem becomes acute when considering the increasing technical ability to profile large numbers of glycopeptides and glycans in recent studies. Here, we describe a simple, concise graphical representation intended to capture the microheterogeneity associated with glycan modification at specific sites. We illustrate this method by showing visual representations of the glycans and glycopeptides from a variety of species. The graphical representation presented allows one to easily discern the compositions of all glycans, similarities and differences of modifications found in different samples and, in the case of N-linked glycans, the initial steps in the biosynthetic pathway.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Glycopeptides/chemistry , Glycosylation , Polysaccharides/chemistry , Proteomics/methods , Tandem Mass Spectrometry/methods
15.
Curr Biol ; 31(23): 5377-5384.e5, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34666004

ABSTRACT

Transcription initiation has long been considered a primary regulatory step in gene expression. Recent work, however, shows that downstream events, such as transcription elongation, can also play important roles.1-3 A well-characterized example from animals is promoter-proximal pausing, where transcriptionally engaged Pol II accumulates 30-50 bp downstream of the transcription start site (TSS) and is thought to enable rapid gene activation.2 Plants do not make widespread use of promoter-proximal pausing; however, in a phenomenon known as 3' pausing, a significant increase in Pol II is observed near the transcript end site (TES) of many genes.4-6 Previous work has shown that 3' pausing is promoted by the BORDER (BDR) family of negative transcription elongation factors. Here we show that BDR proteins play key roles in gene repression. Consistent with BDR proteins acting to slow or pause elongating Pol II, BDR-repressed genes are characterized by high levels of Pol II occupancy, yet low levels of mRNA. The BDR proteins physically interact with FPA,7 one of approximately two dozen genes collectively referred to as the autonomous floral-promotion pathway,8 which are necessary for the repression of the flowering time gene FLOWERING LOCUS C (FLC).9-11 In early-flowering strains, FLC expression is repressed by repressive histone modifications, such as histone H3 lysine 27 trimethylation (H3K27me3), thereby allowing the plants to flower early. These results suggest that the repression of transcription elongation by BDR proteins may allow for the temporary pausing of transcription or facilitate the long-term repression of genes by repressive histone modifications.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/metabolism , Histones/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic
16.
Anal Chem ; 93(24): 8484-8492, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34101419

ABSTRACT

The thermal stabilities of endogenous, intact proteins and protein assemblies in complex mixtures were characterized in parallel by means of variable-temperature electrospray ionization coupled to mass spectrometry (vT-ESI-MS). The method is demonstrated by directly measuring the melting transitions of seven proteins from a mixture of proteins derived from ribosomes. A proof-of-concept measurement of a fraction of an Escherichia coli lysate is provided to extend this approach to characterize the thermal stability of a proteome. As the solution temperature is increased, proteins and protein complexes undergo structural and organizational transitions; for each species, the folded ↔ unfolded and assembled ↔ disassembled populations are monitored based on changes in vT-ESI-MS charge state distributions and masses. The robustness of the approach illustrates a step toward the proteome-wide characterization of thermal stabilities and structural transitions-the stabilitome.


Subject(s)
Ribosomal Proteins , Spectrometry, Mass, Electrospray Ionization , Escherichia coli , Proteome , Temperature
17.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33753485

ABSTRACT

In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV's 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3' ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs).


Subject(s)
Arabidopsis Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , RNA, Double-Stranded/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/isolation & purification , Catalytic Domain/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/isolation & purification , Molecular Docking Simulation , Mutagenesis, Site-Directed , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Two-Hybrid System Techniques
18.
iScience ; 24(3): 102196, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33718843

ABSTRACT

Phosphatidylethanolamine (PE) made in mitochondria has long been recognized as an important precursor for phosphatidylcholine production that occurs in the endoplasmic reticulum (ER). Recently, the strict mitochondrial localization of the enzyme that makes PE in the mitochondrion, phosphatidylserine decarboxylase 1 (Psd1), was questioned. Since a dual localization of Psd1 to the ER would have far-reaching implications, we initiated our study to independently re-assess the subcellular distribution of Psd1. Our results support the unavoidable conclusion that the vast majority, if not all, of functional Psd1 resides in the mitochondrion. Through our efforts, we discovered that mutant forms of Psd1 that impair a self-processing step needed for it to become functional are dually localized to the ER when expressed in a PE-limiting environment. We conclude that severely impaired cellular PE metabolism provokes an ER-assisted adaptive response that is capable of identifying and resolving nonfunctional mitochondrial precursors.

19.
J Neuroendocrinol ; 33(3): e12940, 2021 03.
Article in English | MEDLINE | ID: mdl-33615607

ABSTRACT

Aggression is a complex social behaviour that allows individuals to compete for access to limited resources (eg, mates, food and territories). Excessive or inappropriate aggression, however, has become problematic in modern societies, and current treatments are largely ineffective. Although previous work in mammals suggests that aggressive behaviour varies seasonally, seasonality is largely overlooked when developing clinical treatments for inappropriate aggression. Here, we investigated how the hormone melatonin regulates seasonal changes in neurosteroid levels and aggressive behaviour in Siberian hamsters, a rodent model of seasonal aggression. Specifically, we housed males in long-day (LD) or short-day (SD) photoperiods, administered timed s.c. melatonin injections (which mimic a SD-like signal) or control injections, and measured aggression using a resident-intruder paradigm after 9 weeks of treatment. Moreover, we quantified five steroid hormones in circulation and in brain regions associated with aggressive behaviour (lateral septum, anterior hypothalamus, medial amygdala and periaqueductal gray) using liquid chromatography-tandem mass spectrometry. SD hamsters and LD hamsters administered timed melatonin injections (LD-M) displayed increased aggression and exhibited region-specific decreases in neural dehydroepiandrosterone, testosterone and oestradiol, but showed no changes in progesterone or cortisol. Male hamsters also showed distinct associations between neurosteroids and aggressive behaviour, in which neural progesterone and dehydroepiandrosterone were positively correlated with aggression in all treatment groups, whereas neural testosterone, oestradiol and cortisol were negatively correlated with aggression only in LD-M and SD hamsters. Collectively, these results provide insight into a novel neuroendocrine mechanism of mammalian aggression, in which melatonin reduces neurosteroid levels and elevates aggressive behaviour.


Subject(s)
Aggression/drug effects , Melatonin/pharmacology , Neurosteroids/metabolism , Sexual Behavior, Animal/drug effects , Animals , Brain Chemistry/drug effects , Gonadal Steroid Hormones/blood , Injections, Subcutaneous , Male , Melatonin/administration & dosage , Phodopus , Photoperiod , Seasons
20.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627406

ABSTRACT

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Subject(s)
Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Lyases/metabolism , Phycocyanin/biosynthesis , Phycoerythrin/biosynthesis , Pigments, Biological/biosynthesis , Synechococcus/metabolism , Acclimatization , Aquatic Organisms , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genomic Islands , Light , Light-Harvesting Protein Complexes/genetics , Lyases/genetics , Phycobilins/biosynthesis , Phycobilins/genetics , Phycocyanin/genetics , Phycoerythrin/genetics , Phylogeny , Pigments, Biological/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechococcus/classification , Synechococcus/genetics , Synechococcus/radiation effects , Urobilin/analogs & derivatives , Urobilin/biosynthesis , Urobilin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...