Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Sci Rep ; 14(1): 1620, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238404

ABSTRACT

The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.


Subject(s)
Polyhydroxyalkanoates , Polysorbates , Polyhydroxyalkanoates/chemistry , Biopolymers , Amino Acids , Plastics
3.
Mol Biotechnol ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37907812

ABSTRACT

Prodigiosin is a promising food color due to its antibacterial, antimalarial, antimycotic characteristics, immunomodulating, and antitumor activities. Novel prodigiosin producing strain isolated from sugarcane field soil of Banaras Hindu University, India, characterized as Serratia marcescens bhu prodig by 16 sRNA. The effect of carbon, nitrogen source, and physical parameters (pH and temperature) on pigment yield was studied. The highest amount of pigment produced, which was 800.95 ± 0.05 mg/L, was detected when sorbitol and peptone were used as nitrogen and carbon source with pH 7 at 30 °C. The optimized condition scale-up in a bioreactor with a working capacity of 3.0 L, gave maximum pigment yield of 825 ± 0.05 mg/L with µ (Maximum specific growth rate), Yp/x, which represents the product yield coefficient, and Yp/s, which signifies the specific product yield coefficient and productivity of 0.3/h, 0.62, 0.80, and 0.02 g/L/h, respectively, after 72 h of cultivation in submerged fermentation (SMF). The isolated pigment was characterized as prodigiosin by the analysis of spectral data and GC-MS. The mass spectrophotometry investigation characterized pigment as 4-methoxy-5(5 methyl-4-pentyl-2H-pyrrol-2-ylidene)- 2,2-bipyrrole ring structure. The GC-MS chromatogram showed m/z of 323, representing prodigiosin. The prodigiosin yield and productivity obtained in the current finding were higher than in previous reports.

4.
Antioxidants (Basel) ; 12(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37507952

ABSTRACT

Quinoa (Chenopodium quinoa Willd) and chia (Salvia hispanica) are essential traditional crops with excellent nutritional properties. Quinoa is known for its high and good quality protein content and nine essential amino acids vital for an individual's development and growth, whereas chia seeds contain high dietary fiber content, calories, lipids, minerals (calcium, magnesium, iron, phosphorus, and zinc), and vitamins (A and B complex). Chia seeds are also known for their presence of a high amount of omega-3 fatty acids. Both quinoa and chia seeds are gluten-free and provide medicinal properties due to bioactive compounds, which help combat various chronic diseases such as diabetes, obesity, cardiovascular diseases, and metabolic diseases such as cancer. Quinoa seeds possess phenolic compounds, particularly kaempferol, which can help prevent cancer. Many food products can be developed by fortifying quinoa and chia seeds in different concentrations to enhance their nutritional profile, such as extruded snacks, meat products, etc. Furthermore, it highlights the value-added products that can be developed by including quinoa and chia seeds, alone and in combination. This review focused on the recent development in quinoa and chia seeds nutritional, bioactive properties, and processing for potential human health and therapeutic applications.

5.
Vegetos ; : 1-8, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-37359125

ABSTRACT

The recent pandemic, the novel coronavirus (COVID-19), has put the whole world on alert with the threat of the virus that targets the human respiratory system. The disease has affected more than 633.6 million people globally and caused 6.5 million deaths since November 18, 2022. About 12.94 billion people are vaccinated as of November 18, 2022. Due to varied climatic conditions, SARS-CoV-2 has shown rapid mutation in recent years. Because of the lack of appropriate therapeutic drugs, inadequate diagnostic mechanisms, life-supporting medical facilities, and lack of awareness, the spread of SARS-CoV-2 has become severe. Thus, the most efficient strategy to control this disease is to follow preventive measures. However, treating SARS-CoV-2 cases in Wuhan using traditional Chinese herbs has set an example to show how traditional health can contribute to treating this novel virus. Medicinal herbs are known for their antimicrobial, antibacterial, antiviral, immunomodulatory, immunoadjuvant, and anti-inflammatory properties. These medicinal herbs are used during cooking and consumed regularly worldwide. In this view, medicinal herbs gained evident attention. These herbs can serve as a potential and economical remedy for combating the lethal effects of COVID-19. The present review highlights the phytochemicals and their mechanisms of action in preventing SARS-CoV-2. Supplementary Information: The online version contains supplementary material available at 10.1007/s42535-023-00601-9.

6.
Toxins (Basel) ; 14(8)2022 07 31.
Article in English | MEDLINE | ID: mdl-36006189

ABSTRACT

Mycotoxins are secondary metabolites produced by fungi that infect a wide range of foods worldwide. Nivalenol (NIV), a type B trichothecene produced by numerous Fusarium species, has the ability to infect a variety of foods both in the field and during post-harvest handling and management. NIV is frequently found in cereal and cereal-based goods, and its strong cytotoxicity poses major concerns for both human and animal health. To address these issues, this review briefly overviews the sources, occurrence, chemistry and biosynthesis of NIV. Additionally, a brief overview of several sophisticated detection and management techniques is included, along with the implications of processing and environmental factors on the formation of NIV. This review's main goal is to offer trustworthy and current information on NIV as a mycotoxin concern in foods, with potential mitigation measures to assure food safety and security.


Subject(s)
Fusarium , Mycotoxins , Animals , Edible Grain/chemistry , Food Contamination/analysis , Food Contamination/prevention & control , Fusarium/metabolism , Humans , Mycotoxins/analysis , Trichothecenes
7.
J Food Sci Technol ; 58(11): 4442-4449, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34538928

ABSTRACT

The present study investigated the effect of different wine strains and inoculum size on the physicochemical, bioactive, and sensorial attributes of wine prepared from beetroot with varying TSS content (18 and 20°Brix) and inoculum sizes (5% (v/v) and 10% (v/v)). The beetroot wine produced by fermenting the must for 0-14 days and standard protocols adopted to analyze the wine properties. It was noticed that the acidity of wine increased and pH was found to be decreased as the fermentation days increased. In addition, alcohol content was significantly enhanced (> 10% by volume) in T5, which was higher than the other trials. In general, results of sensory and physicochemical analysis of different trials showed that T5 (TSS 18°Brix and inoculum size of 5% (v/v)) produced the wine of acceptable quality using Saccharomyces cerevisiae. The color properties revealed that the L* value increased as fermentation progressed. Wine prepared from T5 possessed TSS of 6.55°Brix, 3.96 pH, 0.35% titratable acidity, reducing sugar of 26.75 µg ml-1, 30.03% of DPPH free radical scavenging activity, phenol content (104.20 µg ml-1) and betalain content of 10.85 mg 100 g-1. There were significant differences in the taste, flavor, and overall acceptability of beetroot wines fermented for 14 days. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13197-021-05136-y.

8.
J Genet Eng Biotechnol ; 19(1): 110, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34324093

ABSTRACT

BACKGROUND: Pullulanases are the significant industrial group in the 13 glycosyl hydrolases category, known as the α-amylases family. There are very few reports on pullulanase from fungal sources. Based on the above research gap, the present study was undertaken to explore the endophytic fungi for their pullulanase-producing capabilities. RESULTS: A total of 126 endophytes were isolated from Tradescantia pallida, Zea mays, and Trifolium alexandrinum. Aspergillus, Penicillium, and Ganoderma species recovered highest from the stem of Tradescantia palida. Fusarium was dominant in the stem and leaf of Zea mays. Penicillium, Aspergillus, Ganoderma, Cladosporium, Fusarium, and Alternaria were recovered from the Trifolium alexandrium. The Shannon index in Tradescantia pallida was highest in leaves while in Zea mays and Trifolium alexandrinum, it is highest in the stem. The Simpson's index is highest in the case of Zea mays stem and root. Species richness was indicated by Menhinick's index, and it was found that this value was highest in the roots of Trifolium alexandrinum. As per our knowledge, no comparative data is available on the endophytic diversity of the above plants taken for the study. Out of 126 endophytes, only 2.38% produced pullulanase while 7.94% produced amylase. The recovery of pullulanase-producing endophytic fungi was very less. But the importance of pullulanase is high as compared to amylase because it has both α-1,6 and α-1,4 hydrolyzing ability. Therefore, the most promising isolates were identified by ITS sequence analysis. Based on spore chain morphology, isolates BHU-25 and BHU-30 were identified as Penicillium sp. and Aspergillus species, respectively. This is the first report of pullulanase from endophytic Aspergillus and Penicillium. CONCLUSION: Endophytes Aspergillus sp. and Penicillium sp. produce pullulanase enzyme. This is the first report of pullulanase from endophytic Aspergillus and Penicillium.

9.
J Food Sci Technol ; 58(6): 2206-2215, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32904843

ABSTRACT

Mango (Mangifera Indica L.) is a major tropical fruit rich in sugar, organic acids and flavonoids, making it suitable fruit for wine making. In the present study, five varieties of mango (Baganpalli, Langra, Dashehari, Alphonso, and Totapuri) were utilized for wine production using two different yeast strains namely, Saccharomyces cerevisiae MTCC 178 and isolated yeast. The physiochemical analysis of wine produced from chosen mango varieties showed that North Indian local mango variety (Dashehari) gave better results in terms of organoleptic and functional attributes. The Saccharomyces cerevisiae MTCC 178 treated Dashehari wine possessed 6.1 ± 0.26% TSS, 2.1 ± 0.08% reducing sugar, 0.657% titratable acidity, 0.11 ± 0.00% volatile acidity, 12% ethanol (v/v) and pH 3.7 ± 0.10 comparable to Baganpalli mango wine. HPLC analysis of Saccharomyces cerevisiae MTCC 178 inoculated Dashehari mango wine revealed the presence of primarily; gallic acid (RT-4.4 min), Galloyl-A-type, procyanidin (RT-5.2 min), 2,2,6-Trimethyl-6-vinyltetrahydropyran (RT-8.91 min), ß-Pinene (RT-11.47 min) and Caffeoyl-quinic acid (RT-12.15 min) showing potential antioxidant, anti-cancerous, anti-inflammatory and antimicrobial properties. The local mango varieties wine showed significant (p < 0.05) physicochemical properties, antioxidant potential and ethanol content comparable to Baganpalli wine and was cost effective.

10.
Biotechnol Rep (Amst) ; 27: e00517, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32874945

ABSTRACT

Alginate is a group of water-soluble linear polysaccharides comprising of variable units of α-l-guluronic and ß-d-mannuronic acid. The alginates are in high demand in biomedical, pharmaceutical and bioengineering applications. In the present study, we have isolated a strain of Pseudomonas stutzeri that has potential alginate synthesis. The biochemical and physiochemical characteristic including Carbazole assay, DSC, FTIR and H NMR were confirmed the alginate synthesis efficacy by P. stutzeri. Evaluation of P. stutzeri alginate for the removal of heavy metals such as Chromium, Cobalt and Lead showed that it effectively adsorbs heavy metals. Further analysis of gelling ability and cytotoxicity evaluation revealed that the alginate can be reconstituted as hydrogel and scaffold. Overall, our findings suggest that the strain P. stutzeri TN_Alg Syn may be used to produce alginate at commercial level that has the potential bioremediation and biomedical applications.

11.
Prep Biochem Biotechnol ; 49(6): 567-577, 2019.
Article in English | MEDLINE | ID: mdl-30929621

ABSTRACT

Polyhydroxyalkanoates (PHAs) are intracellular carbon and energy storage reserve material stored by gram-negative bacteria under nutrient limitation. PHAs are best alternative biodegradable plastics (bio-plastics) due to their resemblance to conventional synthetic plastic. The present study investigated the synergistic effect of nutritional supplements (amino acid and vitamin) on the PHA production by Alcaligenes sp. NCIM 5085 utilizing a sugar refinery waste (cane molasses) under submerged fermentation process. Initially, the effect of individual factor on PHA yield was studied by supplementing amino acids (cysteine, isoleucine, and methionine), vitamin (thiamin), and cane molasses at varying concentration in the production medium. Further, the cultivation medium was optimized by varying the levels of cane molasses, methionine and thiamin using response surface methodology to enhance the PHA yield. The maximum PHA yield of 70.89% was obtained under the optimized condition, which was then scaled up on 7.5 L-bioreactor. Batch cultivation in 7.5 L-bioreactor under the optimized condition gave a maximum PHA yield and productivity of 79.26% and 0.312 gL-1 h-1, respectively. The PHA produced was subsequently characterized as PHB by FTIR. PHB extracted was of relatively high molecular weight and crystallinity index. DSC analysis gave Tg, Tm, and Xc of 4.2, 179 °C and 66%, respectively. TGA analysis showed thermal stability with maximized degradation occurring at 302 °C, which is above the melting temperature (179 °C) of the purified polymer. The extracted polymer, therefore, possessed desirable material properties to be used in food packaging.


Subject(s)
Amino Acids/metabolism , Polyhydroxyalkanoates/biosynthesis , Thiamine/metabolism , Alcaligenes/metabolism , Bioreactors , Cysteine/metabolism , Fermentation , Food Packaging , Industrial Waste/prevention & control , Isoleucine/metabolism , Methionine/metabolism , Molasses , Molecular Weight , Polyhydroxyalkanoates/chemistry , Transition Temperature , Waste Management/methods
12.
J Food Sci Technol ; 52(6): 3571-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26028739

ABSTRACT

In the present work Lactobacillus delbrueckii was used to utilize agro-industrial byproduct (cane molasses) for lactic acid production under submerged fermentation process. Screening of LAB was done by Fourier transform infra red spectroscopy (FTIR). Effect of different amino acids (DL-Phenylalanine, L-Lysine and DL-Aspartic acid) on the fermentation process was done by high performance liquid chromatography (HPLC). Central composite rotatable design (CCRD) was used to optimize the levels of three parameters viz. tween 80, amino acid and cane molasses concentration during fermentative production of lactic acid. Under optimum condition lactic acid production was enhanced from 55.89 g/L to 84.50 g/L. Further, validation showed 81.50 g/L lactic acid production. Scale up was done on 7.5 L fermentor. Productivity was found to be 3.40 g/L/h which was higher than previous studies with reduced fermentation time from 24 h to 12 h. Further characterization of lactic acid was done by FTIR.

13.
J Food Sci Technol ; 50(2): 367-73, 2013 Apr.
Article in English | MEDLINE | ID: mdl-24425929

ABSTRACT

Kheer, a cereal based dessert containing rice, milk and sugar as major ingredients, is very popular in India and South East Asian countries. A process for manufacturing a dairy dessert based on pearl millet and milk as main ingredients was optimized. During the investigation, the effect of different levels of dairy whitener and pearl millet, and temperature was studied by employing a 3 factor central composite rotatable design version 7.1.6. The best formulation with 18.49% dairy whitener and 6.0% pearl millet and a process temperature of 87.5 °C yielded 46.76% of the product on the basis of the dairy whitener used. This formulation was found to be most appropriate for manufacture of pearl millet-based kheer with predicted scores of 7.62, 7.05, 7.32, 6.97, 6.95 and 7.29 for grain to liquid ratio, consistency, sweetness, grain texture, flavour and overall acceptability respectively.

14.
3 Biotech ; 3(5): 389-397, 2013 Oct.
Article in English | MEDLINE | ID: mdl-28324333

ABSTRACT

Polyhydroxyalkanoates (PHAs) are intracellular reserve material stored by gram-negative bacteria under nutrient-limited condition. PHAs are utilized in biodegradable plastics (bio-plastics) synthesis due to their similarity with conventional synthetic plastic. In the present study, the effect of addition of saturated and unsaturated fatty acids (palmitic acid, stearic acid, oleic acid and linoleic acid) on the production of PHAs by the soil bacterium Alcaligenes sp. NCIM 5085 was studied. Fatty acid supplementation in basal media produced saturated and unsaturated PHAs of medium and short chain length. Gas chromatography analysis of palmitic acid-supplemented media showed the presence of short chain length (scl) PHAs which could potentially serve as precursors for bio-plastic production. The scl PHA was subsequently characterized as PHB by NMR and FTIR. On the other hand, oleic acid and linoleic acid addition showed both saturated and unsaturated PHAs of different chain lengths. Palmitic acid showed maximum PHB content of 70.8 % at concentration of 15 g l-1 under shake flask cultivation. When shake flask cultivation was scaled up in a 7.5-l bioreactor (working volume 3 l), 7.6 g l-1 PHA was produced with a PHB yield (YP/X) and productivity of 75.89 % and 0.14 g l-1 h, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...