Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Rev Rep ; 20(4): 857-880, 2024 May.
Article in English | MEDLINE | ID: mdl-38457060

ABSTRACT

Multiple theories exist to explain cancer initiation, although a consensus on this is crucial for developing effective therapies. 'Somatic mutation theory' suggests that mutations in somatic cells during DNA repair initiates cancer but this concept has several attached paradoxes. Research efforts to identify quiescent cancer stem cells (CSCs) that survive therapy and result in metastasis and recurrence have remained futile. In solid cancers, CSCs are suggested to appear during epithelial-mesenchymal transition by the dedifferentiation and reprogramming of epithelial cells. Pluripotent and quiescent very small embryonic-like stem cells (VSELs) exist in multiple tissues but remain elusive owing to their small size and scarce nature. VSELs are developmentally connected to primordial germ cells, undergo rare, asymmetrical cell divisions and are responsible for the regular turnover of cells to maintain tissue homeostasis throughout life. VSELs are directly vulnerable to extrinsic endocrine insults because they express gonadal and gonadotropin hormone receptors. VSELs undergo epigenetic changes due to endocrine insults and transform into CSCs. CSCs exhibit genomic instability and develop mutations due to errors during DNA replication while undergoing excessive proliferation and clonal expansion to form spheroids. Thus tissue-resident VSELs offer a connection between extrinsic insults and variations in cancer incidence reported in various body tissues. To conclude, cancer is indeed a stem cell disease with mutations occurring as a consequence. In addition to immunotherapy, targeting mutations, and Lgr5 + organoids for developing new therapeutics, targeting CSCs (epigenetically altered VSELs) by improving their niche and epigenetic status could serve as a promising strategy to treat cancer.


Subject(s)
Epigenesis, Genetic , Mutation , Neoplasms , Neoplastic Stem Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Animals , Embryonic Stem Cells/metabolism
2.
Stem Cell Rev Rep ; 20(1): 258-282, 2024 01.
Article in English | MEDLINE | ID: mdl-37779174

ABSTRACT

Pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed endometrial stem cells (EnSCs) are reported in mouse uterus. They express gonadal and gonadotropin hormone receptors and thus are vulnerable to early-life endocrine insults. Neonatal exposure of mouse pups to endocrine disruption cause stem/progenitor cells to undergo epigenetic changes, excessive self-renewal, and blocked differentiation that results in various uteropathies including non-receptive endometrium, hyperplasia, endometriosis, adenomyosis, and cancer-like changes in adult life. Present study investigated reversal of these uteropathies, by normalizing functions of VSELs and EnSCs. Two strategies were evaluated including (i) transplanting mesenchymal stromal cells (provide paracrine support) on D60 or (ii) oral administration of XAR (epigenetic regulator) daily from days 60-100 and effects were studied later in 100 days old mice. Results show normalization of stem/progenitor cells (Oct-4, Oct-4A, Sox-2, Nanog) and Wnt signalling (Wnt-4, ß-catenin, Axin-2) specific transcripts. Flow cytometry results showed reduced numbers of 2-6 µm, LIN-CD45-SCA-1 + VSELs. Hyperplasia (Ki67) of epithelial (Pax-8, Foxa-2) and myometrial (α-Sma, Tgf-ß) cells was reduced, adenogenesis (differentiation of glands) was restored, endometrial receptivity and differentiation (LIF, c-KIT, SOX-9, NUMB) and stromal cells niche (CD90, VIMENTIN, Pdgfra, Vimentin) were improved, cancer stem cells markers (OCT-4, CD166) were reduced while tumor suppressor genes (PTEN, P53) and epigenetic regulators (Ezh-2, Sirt-1) were increased. To conclude, normalizing VSELs/EnSCs to manage uteropathies provides a novel basis for initiating clinical studies. The study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Pluripotent Stem Cells , Female , Animals , Mice , Vimentin , Hyperplasia , Embryonic Stem Cells
3.
Stem Cells ; 41(4): 310-318, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36881778

ABSTRACT

Cancer continues to remain a "Black Box," as there is no consensus on how it initiates, progresses, metastasizes, or recurs. Many imponderables exist about whether somatic mutations initiate cancer, do cancer stem cells (CSCs) exist, and if yes, are they a result of de-differentiation or originate from tissue-resident stem cells; why do cancer cells express embryonic markers, and what leads to metastasis and recurrence. Currently, the detection of multiple solid cancers through liquid biopsy is based on circulating tumor cells (CTCs) or clusters, or circulating tumor DNA (ctDNA). However, quantity of starting material is usually adequate only when the tumor has grown beyond a certain size. We posit that pluripotent, endogenous, tissue-resident, very small embryonic-like stem cells (VSELs) that exist in small numbers in all adult tissues, exit from their quiescent state due to epigenetic changes in response to various insults and transform into CSCs to initiate cancer. VSELs and CSCs share properties like quiescence, pluripotency, self-renewal, immortality, plasticity, enrichment in side-population, mobilization, and resistance to oncotherapy. HrC test, developed by Epigeneres, offers the potential for early detection of cancer using a common set of VSEL/CSC specific bio-markers in peripheral blood. In addition, NGS studies on VSELs/CSCs/tissue-specific progenitors using the All Organ Biopsy (AOB) test provide exomic and transcriptomic information regarding impacted organ(s), cancer type/subtype, germline/somatic mutations, altered gene expressions, and dysregulated pathways. To conclude, HrC and AOB tests can confirm the absence of cancer and categorize the rest of subjects into low/moderate/high risk of cancer, and also monitor response to therapy, remission, and recurrence.


Subject(s)
Neoplasms , Pluripotent Stem Cells , Adult , Humans , Embryonic Stem Cells/metabolism , Cell Differentiation , Neoplastic Stem Cells , Hematologic Tests , Neoplasms/diagnosis , Neoplasms/pathology
5.
J Ovarian Res ; 15(1): 115, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36271409

ABSTRACT

BACKGROUND: Fertility preservation and restoration in cancer patients/survivors is the need of present times when increased numbers of patients get cured of cancer but face infertility as a serious side effect. Resveratrol has beneficial effects on chemoablated ovaries and testes in mice but has failed to enter the clinics because of extremely poor bioavailability. The present study was undertaken to evaluate the protective and curative effects of Extremely active Resveratrol (XAR™)- a nano-formulation of resveratrol with significantly improved bioavailability- on mouse ovary and testis after chemotherapy. Effects of XAR™ and FSH were compared on stimulation of follicle growth in adult mice ovaries. XAR™ (25 mg/kg) was administered for two days prior to chemotherapy to study the protective effects on the mouse gonads. XAR™ was also administered for 14 days post chemoablation to study the regenerative effects. Besides effect on numbers of primordial and growing follicles and spermatogenesis, the effect of XAR™ was also evaluated on the transcripts specific for ovarian/testicular stem/progenitor/germ cells, their proliferation, differentiation, meiosis, and the antioxidant indices. RESULTS: Similar to FSH, XAR™ increased the numbers of primordial follicles (PF) as well as growing follicles. It protected the gonads from the adverse effects of chemotherapy and showed the ability to regenerate non-functional, chemoablated gonads. Besides stimulating follicle growth in adult ovaries similar to FSH, XAR™ also protected the testes from the adverse effects of chemotherapy and improved spermatogenesis. This was accompanied by improved anti-oxidant indices. CONCLUSIONS: The results of the present study potentiate the use of XAR™ in pilot clinical studies to protect gonadal function during oncotherapy and also regenerate non-functional gonads in cancer survivors by improving antioxidant indices and stem cell-based tissue regeneration.


Subject(s)
Antineoplastic Agents , Testis , Male , Female , Mice , Animals , Ovary , Resveratrol/pharmacology , Resveratrol/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Embryonic Stem Cells , Follicle Stimulating Hormone/pharmacology , Antineoplastic Agents/adverse effects
6.
Front Cell Dev Biol ; 10: 1061022, 2022.
Article in English | MEDLINE | ID: mdl-36684436

ABSTRACT

The concept of dedifferentiation and reprogramming of mature somatic cells holds much promise for the three-front "war" against tissue damage, cancer, and aging. It was hoped that reprogramming human somatic cells into the induced pluripotent state, along with the use of embryonic stem cells, would transform regenerative medicine. However, despite global efforts, clinical applications remain a distant dream, due to associated factors such as genomic instability, tumorigenicity, immunogenicity, and heterogeneity. Meanwhile, the expression of embryonic (pluripotent) markers in multiple cancers has baffled the scientific community, and it has been suggested that somatic cells dedifferentiate and "reprogram" into the pluripotent state in vivo to initiate cancer. It has also been suggested that aging can be reversed by partial reprogramming in vivo. However, better methods are needed; using vectors or Yamanaka factors in vivo, for example, is dangerous, and many potential anti-aging therapies carry the same risks as those using induced pluripotent cells, as described above. The present perspective examines the potential of endogenous, pluripotent very small embryonic-like stem cells (VSELs). These cells are naturally present in multiple tissues; they routinely replace diseased tissue and ensure regeneration to maintain life-long homeostasis, and they have the ability to differentiate into adult counterparts. Recent evidence suggests that cancers initiate due to the selective expansion of epigenetically altered VSELs and their blocked differentiation. Furthermore, VSEL numbers have been directly linked to lifespan in studies of long- and short-lived transgenic mice, and VSEL dysfunction has been found in the ovaries of aged mice. To conclude, a greater interest in VSELs, with their potential to address all three fronts of this war, could be the "light at the end of the tunnel."

SELECTION OF CITATIONS
SEARCH DETAIL
...