Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 3(5): 2393-2401, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34308357

ABSTRACT

We studied the surface and microstructure of cellulose acetate (CA) films to tailor their barrier and mechanical properties for application in electrochromic devices (ECDs). Cross-linking of CA was carried out with pyromellitic dianhydride to enhance the properties relative to unmodified CA: solvent resistance (by 43% in acetone and 37% in DMSO), strength (by 91% for tensile at break), and barrier (by 65% to oxygen and 92% to water vapor). Surface modification via tetraethyl orthosilicate and octyltrichlorosilane endowed the films with hydrophobicity, stiffness, and further enhanced solvent resistance. A detailed comparison of structural, chemical, surface, and thermal properties was performed by using X-ray diffraction, dynamic mechanical analyses, Fourier-transform infrared spectroscopy, and atomic force microscopy. Coplanar ECDs were synthesized by incorporating a hydrogel electrolyte comprising TEMPO-oxidized cellulose nanofibrils and an ionic liquid. When applied as the top layer in the ECDs, cross-linked and hydrophobized CA films extended the functionality of the assembled displays. The results indicate excellent prospects for CA films in achieving environmental-friendly ECDs that can replace poly(ethylene terephthalate)-based counterparts.

2.
ACS Nano ; 13(3): 2927-2935, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30689367

ABSTRACT

High yield (>85%) and low-energy deconstruction of never-dried residual marine biomass is proposed following partial deacetylation and microfluidization. This process results in chitin nanofibrils (nanochitin, NCh) of ultrahigh axial size (aspect ratios of up to 500), one of the largest for bioderived nanomaterials. The nanochitins are colloidally stable in water (ζ-potential = +95 mV) and produce highly entangled networks upon pH shift. Viscoelastic and strong hydrogels are formed by ice templating upon freezing and thawing with simultaneous cross-linking. Slow supercooling and ice nucleation at -20 °C make ice crystals grow slowly and exclude nanochitin and cross-linkers, becoming spatially confined at the interface. At a nanochitin concentration as low as 0.4 wt %, highly viscoelastic hydrogels are formed, with a storage modulus of ∼16 kPa, at least an order of magnitude larger compared to those measured for the strongest chitin-derived hydrogels reported so far. Moreover, the water absorption capacity of the hydrogels reaches a value of 466 g g-1. Lyophilization is effective in producing cryogels with a density that can be tailored in a wide range of values, from 0.89 to 10.83 mg·cm-3, and corresponding porosity, between 99.24 and 99.94%. Nitrogen adsorption results indicate reversible adsorption and desorption cycles of macroporous structures. A fast shape recovery is registered from compressive stress-strain hysteresis loops. After 80% compressive strain, the cryogels recovered fast and completely upon load release. The extreme values in these and other physical properties have not been achieved before for neither chitin nor nanocellulosic cryogels. They are explained to be the result of (a) the ultrahigh axial ratio of the fibrils and strong covalent interactions; (b) the avoidance of drying before and during processing, a subtle but critical aspect in nanomanufacturing with biobased materials; and (c) ice templating, which makes the hydrogels and cryogels suitable for advanced biobased materials.

3.
ACS Appl Mater Interfaces ; 10(51): 44776-44786, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30484313

ABSTRACT

Heterogeneous acetylation of wood fibers is proposed for weakening their interfibrillar hydrogen bonding, which facilitates their processing into micro- and nanocelluloses that can be further used to synthesize filaments via wet-spinning. The structural (SEM, WAXD), molecular (SEC), and chemical (FTIR, titration) properties of the system are used to propose the associated reaction mechanism. Unlike the homogeneous acetylation, this method does not alter the main morphological features of cellulose fibrils. Thus, we show for the first time, the exploitation of synergies of compositions simultaneously comprising dissolved cellulose esters and suspended cellulose micro- and nanofibrils. Such colloidal suspension forms a co-continuous assembly with a matrix that interacts strongly with the micro- and nanofibrils in the dispersed phase. This facilitates uninterrupted and defect-free wet-spinning. Upon contact with an antisolvent (water), filaments are easily formed and display a set of properties that set them apart from those reported so far for nanocelluloses: a remarkable stretchability (30% strain) and ultrahigh toughness (33 MJ/m3), both surpassing the values of all reported nanocellulose-based filaments. All the while, they also exhibit competitive stiffness and strength (6 GPa and 143 MPa, respectively). Most remarkably, they retain 90% of these properties after long-term immersion in water, solving the main challenge of the lack of wet strength that is otherwise observed for filaments synthesized from nanocelluloses.


Subject(s)
Cellulose/chemistry , Elastic Modulus , Nanofibers/chemistry , Tensile Strength , Water/chemistry , Acetylation
4.
Biomacromolecules ; 19(7): 2931-2943, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29754482

ABSTRACT

Outstanding optical and mechanical properties can be obtained from hierarchical assemblies of nanoparticles. Herein, the formation of helically ordered, chiral nematic films obtained from aqueous suspensions of cellulose nanocrystals (CNCs) were studied as a function of the initial suspension state. Specifically, nanoparticle organization and the structural colors displayed by the resultant dry films were investigated as a function of the anisotropic volume fraction (AVF), which depended on the initial CNC concentration and equilibration time. The development of structural color and the extent of macroscopic stratification were studied by optical and scanning electron microscopy as well as UV-vis spectroscopy. Overall, suspensions above the critical threshold required for formation of liquid crystals resulted in CNC films assembled with longer ranged order, more homogeneous pitches along the cross sections, and narrower specific absorption bands. This effect was more pronounced for the suspensions that were closer to equilibrium prior to drying. Thus, we show that high AVF and more extensive phase separation in CNC suspensions resulted in large, long-range ordered chiral nematic domains in dried films. Additionally, the average CNC aspect ratio and size distribution in the two separated phases were measured and correlated to the formation of structured domains in the dried assemblies.


Subject(s)
Cellulose/analogs & derivatives , Nanoparticles/chemistry , Anisotropy , Liquid Crystals/chemistry
5.
Sci Rep ; 8(1): 2106, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391454

ABSTRACT

We introduce a generalized approach to synthesize aerogels that allows remarkable control over its mechanical properties. The Hansen solubility parameters are used to predict and regulate the swelling properties of the precursor gels and, consequently, to achieve aerogels with tailored density and mechanical properties. As a demonstration, crosslinked organogels were synthesized from cellulose esters to generate aerogels. By determination of Hansen's Relative Energy Difference, it was possible to overcome the limitations of current approaches that solely rely on the choice of precursor polymer concentration to achieve a set of aerogel properties. Hence, from a given concentration, aerogels were produced in a range of mass densities, from 25 to 113 mg/cm3. Consequently, it was possible to tailor the stiffness, toughness and compressive strength of the aerogels, in the ranges between 14-340, 4-103 and 22-373 kPa, respectively. Additionally, unidirectional freeze-drying introduced pore alignment in aerogels with honeycomb morphologies and anisotropy. Interestingly, when the swelling of the polymeric gel was arrested in a non-equilibrium state, it was possible to gain additional control of the property space. The proposed method is a novel and generic solution to achieving full control of aerogel development, which up to now has been an intractable challenge.

6.
ACS Omega ; 2(8): 4297-4305, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457721

ABSTRACT

A unique combination of well-established synthesis procedures involving chemical cross-linking, careful solvent exchange to water, and subsequent freeze drying is used to produce ultralight (4.3 mg/mL) and highly porous (99.7%) cellulose diacetate (CDA) aerogels with honeycomb morphology. This versatile synthesis approach is extended to other nonaqueous polymers with hydroxyl functionalities such as cellulose acetate propionate and cellulose acetate butyrate to produce a single component polymer aerogel. These aerogels demonstrate a maximum water and oil uptake of up to 92 and 112 g/g, respectively. The honeycomb morphology provides a maximum compression strain of 92% without failure and reaches a compressive stress of 350 kPa, for 4 w/v % CDA aerogels (4%), which is higher than that reported for cellulosic aerogels. The 4% CDA aerogel were rendered hydrophobic and oleophilic via chemical vapor deposition with organosilane. The modified CDA aerogel surpasses their counterparts in maintaining their mechanical integrity for fast oil cleanup and efficient oil retention from aqueous media under marine conditions. These aerogels are identified to be reusable and durable for a long period.

SELECTION OF CITATIONS
SEARCH DETAIL
...