Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37936032

ABSTRACT

Plastic has been known as an artificial polymer whereas environmental microplastics become a global concern. Microplastics are reported to cause immunotoxicity in humans through gut deposition and entering the bloodstream. This study is a comprehensive indication of the recent research on microplastic toxicity in the gastrointestinal system. We performed bibliographic analysis using VOS viewer software and analyzed the data received on microplastics and their impact on gut health which has grown exponentially since 2016. Recent findings also support microplastic toxicity in combination with heavy metals. The smaller particle size and other factors enhanced the adsorption ability of environmental contamination such as heavy metals on microplastic which increased their bioaccumulation. Such toxic complexes of heavy metals and microplastics are a concern to natural ecosystems and environmental biologists. Few reports also demonstrated the biofilm formation on microplastic surfaces which might cause greater environmental as well as human health risks. Notably, terms of determining the microplastics in human tissues through several analytical techniques are still limited to some extent. Future research should be focused on the quantification of microplastics in human tissues, the combined effect of microplastics with other contaminants, and their effects on pre-existing diseases. This study boosts understanding of the potential impacts of microplastic and nanoplastic toxicity in the human gastrointestinal system.

2.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 830-836, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37561403

ABSTRACT

Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and ß-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Šresolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.


Subject(s)
Escherichia coli , Mutagens , Humans , Mutagens/metabolism , Escherichia coli/genetics , Amidohydrolases
3.
Cell Rep ; 42(7): 112755, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37436899

ABSTRACT

Elicitation of antibodies that neutralize the tier-2 neutralization-resistant isolates that typify HIV-1 transmission has been a long-sought goal. Success with prefusion-stabilized envelope trimers eliciting autologous neutralizing antibodies has been reported in multiple vaccine-test species, though not in humans. To investigate elicitation of HIV-1 neutralizing antibodies in humans, here, we analyze B cells from a phase I clinical trial of the "DS-SOSIP"-stabilized envelope trimer from strain BG505, identifying two antibodies, N751-2C06.01 and N751-2C09.01 (named for donor-lineage.clone), that neutralize the autologous tier-2 strain, BG505. Though derived from distinct lineages, these antibodies form a reproducible antibody class that targets the HIV-1 fusion peptide. Both antibodies are highly strain specific, which we attribute to their partial recognition of a BG505-specific glycan hole and to their binding requirements for a few BG505-specific residues. Prefusion-stabilized envelope trimers can thus elicit autologous tier-2 neutralizing antibodies in humans, with initially identified neutralizing antibodies recognizing the fusion-peptide site of vulnerability.


Subject(s)
AIDS Vaccines , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibodies, Neutralizing , env Gene Products, Human Immunodeficiency Virus , HIV Antibodies , Peptides
4.
Structure ; 31(4): 480-491.e4, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36931276

ABSTRACT

Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.6- and 3.7-Å resolution revealed L9 to recognize PfCSP as an atypical trimer. Each of the three L9s in the trimer directly recognized an Asn-Pro-Asn-Val (NPNV) tetrapeptide on PfCSP and interacted homotypically to facilitate L9-trimer assembly. We analyzed peptides containing different repeat tetrapeptides for binding to wild-type and mutant L9s to delineate epitope and homotypic components of L9 recognition; we found both components necessary for potent malaria protection. Last, we found the 27-residue stretch recognized by L9 to be highly conserved in P. falciparum isolates, suggesting the newly revealed complete L9 epitope to be an attractive vaccine target.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria , Humans , Epitopes , Cryoelectron Microscopy , Plasmodium falciparum , Antibodies, Protozoan , Protozoan Proteins/genetics , Protozoan Proteins/chemistry
5.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Article in English | MEDLINE | ID: mdl-36382536

ABSTRACT

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Subject(s)
Antibodies, Bispecific , Humans , Antibodies, Bispecific/therapeutic use , Immunotherapy
6.
Front Immunol ; 13: 954339, 2022.
Article in English | MEDLINE | ID: mdl-36275735

ABSTRACT

The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Animals , Mice , SARS-CoV-2 , Fatty Acids, Volatile/metabolism , Lung/metabolism , Homeostasis , Dietary Fiber , Immunity
7.
J Exp Med ; 219(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35736810

ABSTRACT

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.


Subject(s)
Antimalarials , Malaria Vaccines , Antibodies, Protozoan , Antimalarials/pharmacology , Cryoelectron Microscopy , Humans , Plasmodium falciparum , Protozoan Proteins , Saccharomyces cerevisiae/genetics
8.
J Biomol Struct Dyn ; 40(20): 10332-10344, 2022.
Article in English | MEDLINE | ID: mdl-34229568

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) is a bottleneck enzyme that plays a key role in recycling nicotinamide to maintain the adequate NAD + level inside the cell. It involves maintaining the cellular bioenergetics and providing a necessary substrate for functions essential to rapidly proliferating the cancer cells. Therefore, inhibition of NAMPT appears as a therapeutic potential for cancer treatment. Here, the vast virtual screening followed by focused docking and in-vitro analysis was carried out to identify the promising hits of NAMPT. We have identified two potential hits from the filtered molecules, which are chemically diverse and have shown comparable quantitative values with reported co-crystal '1QS' as their binding pattern matched nicely. These two compounds are further explored through molecular dynamics simulations (MD) combined with pharmacokinetics profiling and thermodynamic analysis demonstrating their suitability as novel NAMPT inhibitors that can be used as starting points for a hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Nicotinamide Phosphoribosyltransferase , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Niacinamide , Thermodynamics , Molecular Docking Simulation
9.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788599

ABSTRACT

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Subject(s)
B-Lymphocyte Subsets/immunology , Epitopes/immunology , Malaria Vaccines/immunology , Malaria/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Vaccines, DNA/immunology , Adoptive Transfer , Animals , Antibodies, Protozoan/metabolism , Disease Models, Animal , Epitopes/genetics , Genetic Engineering , Humans , Immune Evasion , Immunogenicity, Vaccine , Mice , Mice, SCID , Protozoan Proteins/genetics , Structure-Activity Relationship , Vaccination
10.
Front Physiol ; 12: 715611, 2021.
Article in English | MEDLINE | ID: mdl-34630140

ABSTRACT

Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.

11.
Biochemistry ; 60(20): 1619-1625, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33945270

ABSTRACT

The natural product colibactin, along with its associated biosynthetic gene cluster, is an example system for the role microbially derived small molecules play in the human microbiome. This is particularly relevant in the human gut, where host microbiota is involved in various disorders, including colorectal cancer pathogenesis. Bacteria harboring the colibactin gene cluster induce alkylation of nucleobases in host DNA, forming interstrand cross-links both in vivo and in vitro. These lesions can lead to deleterious double-strand breaks and have been identified as the primary mechanism of colibactin-induced cytotoxicity. The gene product ClbS is one of several mechanisms utilized by the producing bacteria to maintain genome integrity. ClbS catalyzes hydrolytic inactivation of colibactin and has been shown to bind DNA, incurring self-resistance. Presented is the molecular basis for ClbS bound to a DNA oligonucleotide. The structure shows the interaction of the protein with the ends of a DNA duplex with terminal nucleotides flipped to the enzyme active site. The structure suggests an additional function for ClbS, the binding to damaged DNA followed by repair. Additionally, our study provides general insight into the function of the widely distributed and largely uncharacterized DUF1706 protein family.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Alkylation , DNA/chemistry , DNA Damage , DNA-Binding Proteins/physiology , Escherichia coli/genetics , Escherichia coli Proteins/physiology , Mutagens/metabolism , Peptides/pharmacology , Polyketides/pharmacology , RNA/chemistry
12.
Nutrition ; 78: 110792, 2020 10.
Article in English | MEDLINE | ID: mdl-32473529

ABSTRACT

OBJECTIVES: Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide and a rapidly rising incidence, diabetes mellitus poses a great burden on health care systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dysregulation of the intestinal barrier. Hyperglycemia-mediated tight junction deformity is known to contribute to leaky gut in various metabolic disorders. The present study aimed to investigate the role of oxidative stress on intestinal epithelial tight junction (TJ) barrier functions in hyperglycemia. Because many flavonoids are known to influence the cellular redox state, exploring these flavonoids may help to understand the role of TJ barrier in hyperglycemia-mediated oxidative stress, which in turn might unfold the association of oxidative stress and dysfunction of barrier-forming TJs. METHODS: Caco-2 cells were stimulated with high glucose (HG), with or without flavonoids (quercetin, morin, naringenin), for 24 h. We determined cellular viability, levels of reactive oxygen species, and mitochondrial membrane potential in flavonoids treated HG-Caco-2 cells. The levels of the proinflammatory cytokines, glucose uptake, and expression of glucose transporters were determined on flavonoids treatment. We investigated the effect of flavonoids on TJs functions by measuring transepithelial electrical resistance (a TJ integrity marker), membrane permeability using tracer compounds, and the expressions levels of TJs related molecules on hyperglycemic Caco-2 cell monolayers. RESULTS: We found that high glucose treatment resulted in reduced cell viability, increased reactive oxygen species production, measurable mitochondrial dysfunction, and decreased transepithelial electrical resistance, with increased membrane permeability. Treatment with the test flavonoids produced increased cell viability and reduced glucose uptake of HG-Caco-2 cells. A concomitant decrease in reactive oxygen species production, proinflammatory cytokines, and Glut-associated genes and proteins were identified with flavonoid treatment. Flavonoids prevented derangement of TJs protein interaction and stabilized membrane permeability. CONCLUSIONS: These findings indicate that flavonoids confer protection against hyperglycemia-mediated oxidative stress and enhance intestinal barrier functions by modulating underlying intracellular molecular mechanisms.


Subject(s)
Intestinal Mucosa , Tight Junctions , Caco-2 Cells , Cell Membrane Permeability , Flavonoids/pharmacology , Humans , Intestinal Mucosa/metabolism , Permeability , Tight Junctions/metabolism
13.
Mol Immunol ; 116: 63-72, 2019 12.
Article in English | MEDLINE | ID: mdl-31622795

ABSTRACT

Somatic hypermutation (SHM) of Ig genes is initiated by activation-induced cytidine deaminase (AID) and requires target gene transcription. A splice isoform of SRSF1, SRSF1-3, is necessary for AID-dependent SHM of IgV genes. Nevertheless, its exact molecular mechanism of action in SHM remains unknown. Our in silico studies show that, unlike SRSF1, SRSF1-3 lacks a strong nuclear localization domain. We show that the absence of RS domain in SRSF1-3 affects its nuclear localization, as compared to SRSF1. Consequently, SRSF1-3 is predominantly present in the cytoplasm. Remarkably, co-immunoprecipitation studies showed that SRSF1-3 interacts with Topoisomerase 1 (TOP1), a crucial regulator of SHM that assists in generating ssDNA for AID activity. Moreover, the immunofluorescence studies confirmed that SRSF1-3 and TOP1 are co-localized in the nucleus. Furthermore, Proximity Ligation Assay corroborated the direct interaction between SRSF1-3 and TOP1. An interaction between SRSF1-3 and TOP1 suggests that SRSF1-3 likely influences the TOP1 activity and consequently can aid in SHM. Accordingly, SRSF1-3 probably acts as a link between TOP1 and SHM, by spatially regulating TOP1 activity at the Ig locus. We also confirmed the interaction between SRSF1-3 and AID in chicken B-cells. Thus, SRSF1-3 shows dual-regulation of SHM, via interacting with AID as well as TOP1.


Subject(s)
Cytidine Deaminase/genetics , DNA Topoisomerases, Type I/genetics , Genes, Immunoglobulin/genetics , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Somatic Hypermutation, Immunoglobulin/genetics , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , Cell Line , Cell Nucleus/genetics , Chickens/genetics , Immunoglobulin Class Switching , Immunoprecipitation/methods , Mice , Protein Isoforms/genetics
14.
Eur J Immunol ; 49(3): 443-453, 2019 03.
Article in English | MEDLINE | ID: mdl-30427069

ABSTRACT

Natural killer T (NKT) cells recognize glycolipids presented on CD1d. They share features of adaptive T lymphocytes and innate NK cells, and mediate immunoregulatory functions via rapid production of cytokines. Invariant (iNKT) and diverse (dNKT) NKT cell subsets are defined by their TCR. The immunological role of dNKT cells, that do not express the invariant TCRα-chain used by iNKT cells, is less well explored than that of iNKT cells. Here, we investigated signals driving Toll-like receptor (TLR) ligand activation of TCR-transgenic murine dNKT cells. IFN-γ production by dNKT cells required dendritic cells (DC), cell-to-cell contact and presence of TLR ligands. TLR-stimulated DC activated dNKT cells to secrete IFN-γ in a CD1d-, CD80/86- and type I IFN-independent manner. In contrast, a requirement for IL-12p40, and a TLR ligand-selective dependence on IL-18 or IL-15 was observed. TLR ligand/DC stimulation provoked early secretion of pro-inflammatory cytokines by both CD62L+ and CD62L- dNKT cells. However, proliferation was limited. In contrast, TCR/co-receptor-mediated activation resulted in proliferation and delayed production of a broader cytokine spectrum preferentially in CD62L- dNKT cells. Thus, innate (TLR ligand/DC) and adaptive (TCR/co-receptor) stimulation of dNKT cells resulted in distinct cellular responses that may contribute differently to the formation of immune memory.


Subject(s)
Adaptive Immunity/immunology , Cytokines/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Natural Killer T-Cells/immunology , Animals , Antigens, CD1d/genetics , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , Cell Proliferation/genetics , Cells, Cultured , Cytokines/metabolism , Immunity, Cellular/immunology , Ligands , Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Natural Killer T-Cells/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism
15.
J Nutr Biochem ; 63: 101-108, 2019 01.
Article in English | MEDLINE | ID: mdl-30366260

ABSTRACT

Type 2 diabetes mellitus (T2D) is a highly prevalent metabolic disorder characterized by an imbalance in blood glucose level, altered lipid profile and high blood pressure. Genetic constituents, high-fat and high-energy dietary habits, and a sedentary lifestyle are three major factors that contribute to high risk of T2D. Several studies have reported gut microbiome dysbiosis as a factor in rapid progression of insulin resistance in T2D that accounts for about 90% of all diabetes cases worldwide. The gut microbiome dysbiosis may reshape intestinal barrier functions and host metabolic and signaling pathways, which are directly or indirectly related to the insulin resistance in T2D. Thousands of the metabolites derived from microbes interact with the epithelial, hepatic and cardiac cell receptors that modulate host physiology. Xenobiotics including dietary components, antibiotics and nonsteroidal anti-inflammatory drugs strongly affect the gut microbial composition and can promote dysbiosis. Any change in the gut microbiota can shift the host metabolism towards increased energy harvest during diabetes and obesity. However, the exact mechanisms behind the dynamics of gut microbes and their impact on host metabolism at the molecular level are yet to be deciphered. We reviewed the published literature for better understanding of the dynamics of gut microbiota, factors that potentially induce gut microbiome dysbiosis and their relation to the progression of T2D. Special emphasis was also given to understand the gut microbiome induced breaching of intestinal barriers and/or tight junctions and their relation to insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/physiology , Animals , Anti-Bacterial Agents/adverse effects , Carbohydrate Metabolism , Diabetes Mellitus, Type 2/diet therapy , Diet , Humans , Obesity/microbiology , Probiotics/therapeutic use
16.
J Am Chem Soc ; 140(44): 15114-15123, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30336012

ABSTRACT

Chemical biology research often requires precise covalent attachment of labels to the native proteins. Such methods are sought after to probe, design, and regulate the properties of proteins. At present, this demand is largely unmet due to the lack of empowering chemical technology. Here, we report a chemical platform that enables site-selective labeling of native proteins. Initially, a reversible intermolecular reaction places the "chemical linchpins" globally on all the accessible Lys residues. These linchpins have the capability to drive site-selective covalent labeling of proteins. The linchpin detaches within physiological conditions and capacitates the late-stage installation of various tags. The chemical platform is modular, and the reagent design regulates the site of modification. The linchpin is a multitasking group and facilitates purification of the labeled protein eliminating the requirement of additional chromatography tag. The methodology allows the labeling of a single protein in a mixture of proteins. The precise modification of an accessible residue in protein ensures that their structure remains unaltered. The enzymatic activity of myoglobin, cytochrome C, aldolase, and lysozyme C remains conserved after labeling. Also, the cellular uptake of modified insulin and its downstream signaling process remain unperturbed. The linchpin directed modification (LDM) provides a convenient route for the conjugation of a fluorophore and drug to a Fab and monoclonal antibody. It delivers trastuzumab-doxorubicin and trastuzumab-emtansine conjugates with selective antiproliferative activity toward Her-2 positive SKBR-3 breast cancer cells.


Subject(s)
Fluorescent Dyes/chemistry , Proteins/chemistry , Models, Molecular , Molecular Structure
17.
Front Immunol ; 9: 1969, 2018.
Article in English | MEDLINE | ID: mdl-30210505

ABSTRACT

Natural killer T (NKT) cells are unique unconventional T cells that are reactive to lipid antigens presented on the non-polymorphic major histocompatibility class (MHC) I-like molecule CD1d. They have characteristics of both innate and adaptive immune cells, and have potent immunoregulatory roles in tumor immunity, autoimmunity, and infectious diseases. Based on their T cell receptor (TCR) expression, NKT cells are divided into two subsets, type I NKT cells with an invariant TCRα-chain (Vα24 in humans, Vα14 in mice) and type II NKT cells with diverse TCRs. While type I NKT cells are well-studied, knowledge about type II NKT cells is still limited, and it is to date only possible to identify subsets of this population. However, recent advances have shown that both type I and type II NKT cells play important roles in many inflammatory situations, and can sometimes regulate the functions of each other. Type II NKT cells can be both protective and pathogenic. Here, we review current knowledge on type II NKT cells and their functions in different disease settings and how these cells can influence immunological outcomes.


Subject(s)
Autoimmune Diseases/immunology , Communicable Diseases/immunology , Natural Killer T-Cells/immunology , Neoplasms/immunology , T-Lymphocyte Subsets/immunology , Animals , Antigen Presentation , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , Humans , Immunomodulation , Lipids/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
18.
Sci Rep ; 8(1): 10104, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973712

ABSTRACT

The diversity and basic functional attributes of the gut microbiome of healthy Indians is not well understood. This study investigated the gut microbiome of three Indian communities: individuals residing in rural and urban (n = 49) sea level Ballabhgarh areas and in rural high altitude areas of Leh, Ladakh in North India (n = 35). Our study revealed that the gut microbiome of Indian communities is dominated by Firmicutes followed by Bacteroidetes, Actinobateria and Proteobacteria. Although, 54 core bacterial genera were detected across the three distinct communities, the gut bacterial composition displayed specific signatures and was observed to be influenced by the topographical location and dietary intake of the individuals. The gut microbiome of individuals living in Leh was observed to be significantly similar with a high representation of Bacteroidetes and low abundance of Proteobacteria. In contrast, the gut microbiome of individuals living in Ballabhgarh areas harbored higher number of Firmicutes and Proteobacteria and is enriched with microbial xenobiotic degradation pathways. The rural community residing in sea level Ballabhgarh areas has unique microbiome characterized not only by a higher diversity, but also a higher degree of interindividual homogeneity.


Subject(s)
Altitude , Gastrointestinal Microbiome , Actinobacteria/isolation & purification , Adolescent , Adult , Bacteroidetes/isolation & purification , Diet , Female , Firmicutes/isolation & purification , Humans , India , Male , Middle Aged , Proteobacteria/isolation & purification , Rural Population , Urban Population
19.
Nat Commun ; 9(1): 2067, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802242

ABSTRACT

Testosterone deficiency in men is associated with increased risk for autoimmunity and increased B cell numbers through unknown mechanisms. Here we show that testosterone regulates the cytokine BAFF, an essential survival factor for B cells. Male mice lacking the androgen receptor have increased splenic B cell numbers, serum BAFF levels and splenic Baff mRNA. Testosterone deficiency by castration causes expansion of BAFF-producing fibroblastic reticular cells (FRCs) in spleen, which may be coupled to lower splenic noradrenaline levels in castrated males, as an α-adrenergic agonist decreases splenic FRC number in vitro. Antibody-mediated blockade of the BAFF receptor or treatment with the neurotoxin 6-hydroxydopamine revert the increased splenic B cell numbers induced by castration. Among healthy men, serum BAFF levels are higher in men with low testosterone. Our study uncovers a previously unrecognized regulation of BAFF by testosterone and raises important questions about BAFF in testosterone-mediated protection against autoimmunity.


Subject(s)
Autoimmune Diseases/metabolism , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Lymphocytes/immunology , Testosterone/metabolism , Adrenergic alpha-Agonists/pharmacology , Animals , Autoimmune Diseases/immunology , B-Cell Activating Factor/blood , B-Cell Activation Factor Receptor/antagonists & inhibitors , B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Castration , Humans , Male , Mice , Mice, Knockout , Models, Animal , Norepinephrine/metabolism , Oxidopamine/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Testosterone/blood , Testosterone/deficiency , Testosterone/immunology
20.
Gastroenterology ; 154(6): 1751-1763.e2, 2018 05.
Article in English | MEDLINE | ID: mdl-29408609

ABSTRACT

BACKGROUND & AIMS: Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. METHODS: Germ-free C57BL/6 Il10-/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (109 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10-/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. RESULTS: Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10-/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10-/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. CONCLUSIONS: We identified a mechanism by which the microbiota controls susceptibility to C jejuni infection in mice, via bacteria-derived secondary bile acids.


Subject(s)
Bile Acids and Salts/administration & dosage , Campylobacter Infections/microbiology , Campylobacter jejuni/metabolism , Gastroenteritis/microbiology , Gastrointestinal Microbiome/physiology , Anaerobiosis , Animals , Cholagogues and Choleretics/administration & dosage , Colon/microbiology , Culture Techniques/methods , Deoxycholic Acid/administration & dosage , Disease Models, Animal , Fecal Microbiota Transplantation , Feces/microbiology , Intestines/cytology , Lithocholic Acid/administration & dosage , Mice , Mice, Inbred C57BL , Ursodeoxycholic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...