Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 170: 108083, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295479

ABSTRACT

B-cell is an essential component of the immune system that plays a vital role in providing the immune response against any pathogenic infection by producing antibodies. Existing methods either predict linear or conformational B-cell epitopes in an antigen. In this study, a single method was developed for predicting both types (linear/conformational) of B-cell epitopes. The dataset used in this study contains 3875 B-cell epitopes and 3996 non-B-cell epitopes, where B-cell epitopes consist of both linear and conformational B-cell epitopes. Our primary analysis indicates that certain residues (like Asp, Glu, Lys, and Asn) are more prominent in B-cell epitopes. We developed machine-learning based methods using different types of sequence composition and achieved the highest AUROC of 0.80 using dipeptide composition. In addition, models were developed on selected features, but no further improvement was observed. Our similarity-based method implemented using BLAST shows a high probability of correct prediction with poor sensitivity. Finally, we developed a hybrid model that combines alignment-free (dipeptide based random forest model) and alignment-based (BLAST-based similarity) models. Our hybrid model attained a maximum AUROC of 0.83 with an MCC of 0.49 on the independent dataset. Our hybrid model performs better than existing methods on an independent dataset used in this study. All models were trained and tested on 80 % of the data using a cross-validation technique, and the final model was evaluated on 20 % of the data, called an independent or validation dataset. A webserver and standalone package named "CLBTope" has been developed for predicting, designing, and scanning B-cell epitopes in an antigen sequence available at (https://webs.iiitd.edu.in/raghava/clbtope/).


Subject(s)
Antigens , Epitopes, B-Lymphocyte , Epitopes, B-Lymphocyte/chemistry , Amino Acid Sequence , Antigens/chemistry , Molecular Conformation , Dipeptides
2.
Drug Discov Today ; 28(4): 103523, 2023 04.
Article in English | MEDLINE | ID: mdl-36764575

ABSTRACT

Over the years, numerous vaccines have been developed against viral infections; however, a complete database that provides comprehensive information on viral vaccines has been lacking. In this review, along with our freely accessible database ViralVacDB, we provide details of the viral vaccines, their type, routes of administration and approving agencies. This repository systematically covers additional information such as disease name, adjuvant, manufacturer, clinical status, age and dosage against 422 viral vaccines, including 145 approved vaccines and 277 in clinical trials. We anticipate that this database will be highly beneficial to researchers and others working in pharmaceuticals and immuno-informatics.


Subject(s)
Viral Vaccines , Virus Diseases , Humans , Virus Diseases/prevention & control , Databases, Factual
3.
Front Genet ; 13: 858252, 2022.
Article in English | MEDLINE | ID: mdl-35464852

ABSTRACT

The global efforts to control COVID-19 are threatened by the rapid emergence of novel SARS-CoV-2 variants that may display undesirable characteristics such as immune escape, increased transmissibility or pathogenicity. Early prediction for emergence of new strains with these features is critical for pandemic preparedness. We present Strainflow, a supervised and causally predictive model using unsupervised latent space features of SARS-CoV-2 genome sequences. Strainflow was trained and validated on 0.9 million sequences for the period December, 2019 to June, 2021 and the frozen model was prospectively validated from July, 2021 to December, 2021. Strainflow captured the rise in cases 2 months ahead of the Delta and Omicron surges in most countries including the prediction of a surge in India as early as beginning of November, 2021. Entropy analysis of Strainflow unsupervised embeddings clearly reveals the explore-exploit cycles in genomic feature-space, thus adding interpretability to the deep learning based model. We also conducted codon-level analysis of our model for interpretability and biological validity of our unsupervised features. Strainflow application is openly available as an interactive web-application for prospective genomic surveillance of COVID-19 across the globe.

SELECTION OF CITATIONS
SEARCH DETAIL
...