Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Environ Res ; 226: 115618, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36921788

ABSTRACT

The presence of lignin along with other pollutants makes effluent more complex when it is discharged from Pulp and paper mills. The present study investigates the use of biofilm-forming bacteria isolated from pulp paper mill effluent contaminated sites (PPMECSs) for lignin degradation. Isolated biofilm-forming and lignin-degrading bacteria were identified as Bacillus subtilis, Enterobacter cancerogenus, and Bacillus licheniformis by 16S rRNA gene sequencing. Thin liquid chromatography (TLC) analysis showed that the consortium of bacteria produced acyl-homoserine lactone (AHL) as quorum sensing molecules and extracellular polymeric substances (EPS) that protect the bacterial consortium under unfavorable conditions. The potential consortium was able to reduce lignin (900 ppm) by 73% after 8 days of incubation in a minimal salt medium containing kraft lignin and glucose at pH 7.0 and 37 °C as compared to individual strains. The degradation by-products were identified as amides, alcohols, and acids. The major organic pollutants in the effluent were reduced after treatment of the constructed consortium, thus confirming active biotransformation and biodegradation of the lignin. Microscopic examination also indicated the presence of lignin induced biofilm formation. Hence, the constructed biofilm-forming bacterial consortia based on quorum sensing offered a sustainable and effective solution to treat lignin-containing complex pollutants.


Subject(s)
Environmental Pollutants , Quorum Sensing , Lignin , RNA, Ribosomal, 16S , Biofilms , Bacteria/genetics , Bacteria/metabolism
2.
J Contam Hydrol ; 254: 104139, 2023 03.
Article in English | MEDLINE | ID: mdl-36642008

ABSTRACT

India faces major challenges related to fresh water supply and the reuse of treated wastewater is an important strategy to combat water scarcity. Wastewater in Gorakhpur, India, is treated by a decentralised wastewater treatment system (DEWATS) and the treated wastewater is reused in the rural area. This research provides important scientific data that ascertain the safety of wastewater reuse in this region. The physicochemical characteristics, including pigment, ionic strength, BOD, COD, TDS, TSS, salinity, total N, ammonium N, phenolics, heavy metals, and sulphate, of the inlet and outlet sewage water samples (SWWs) from a wastewater treatment facility was conducted. These parameters were found to be significantly over the national limit. The inlet and outlet samples were further characterised by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS). SEM showed microstructure and the presence of various metals, polymers, and other co-pollutants in the samples and FT-IR confirmed the presence of aldehyde, hard liquor, and nitrogen molecules in the SWW's discharge. Many endocrine disruptors and potentially mutagenic chemical substances (e.g., Dodecane, Hexadecane, Octadecane etc.) were identified in the outlet SWW by the GC-MS analysis. Toxicity of the SWW was assessed via phytotoxicity assessment using Phaseolus mungo L. and histological and biochemical analyses of Heteropneustes fossilis in a 24-h exposure study. Results confirmed the wastewater was harmful and inhibited germination of P. mungo L. by >80% compared to the control, destroyed gill laminae and significantly increased oxidative stress (above 5% increase in catalase production) in H. fossilis. This work clearly demonstrated that the quality of the treated wastewater in Gorakhpur was poor and immediate action is needed before it can be discharged or reused.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Wastewater , Sewage/analysis , Environmental Pollutants/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid
3.
J Environ Manage ; 332: 117294, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36708597

ABSTRACT

The aim of the study is to explore the potential rhizospheric bacterial communities associated with Cannabis sativa L. (Cannabis); growing on the complex pollutant-rich distillery sludge. Seven bacterial species were isolated, among which four potential bacterial species were characterized based on the 16s rRNA sequencing from the rhizosphere sludge of C. sativa; they are Bacillus thuringiensis (MW887525), Bacillus cereus (MW887524), Achromobacter denitrificans (MW886333), Bacillus subtilis (MW886231). The isolated bacteria showed PGPR attributes and potential for ligninolytic enzyme activity. Further, to correlate these bacteria with organic pollutants of sludge, the GC-MS analysis of fresh disposed distillery sludge and after growth of 30 and 60 days C. sativa was also analysed, which showed the conversion and disappearance of compounds by the activity of rhizospheric bacterial communities. Additionally, C. sativa showed a higher metal accumulation pattern of Fe (801.81 ± 0.123)> Cu (275.086 ± 0.069)> Zn (162.15 ± 0.085)> Mn (63.92 ± 0.093)> Pb (28.619 ± 0.192)> Ni (5.02 ± 0.078)> Cd (2.53 ± 0.085)> Cr (1.87 ± 0.079) mg kg -1 in their shoot, root followed by leaf. The plant also showed BCF >1 and TF > 1 for most of the metals. Thus, this showed the phytoextraction properties of C. sativa from distillery sludge polluted sites. The findings of this study will enable to understand the functional role of rhizospheric bacterial community for the detoxification and degradation of complex organometallic waste, and will thus aid in the development of adequate phytoremediation techniques for the eco-restoration of polluted industrial sites for sustainable development.


Subject(s)
Cannabis , Environmental Pollutants , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Cannabis/metabolism , Environmental Pollutants/analysis , Sewage/analysis , RNA, Ribosomal, 16S , Soil Pollutants/analysis , Soil , Metals, Heavy/analysis , Plants/metabolism , Bacillus subtilis/metabolism
4.
Environ Monit Assess ; 195(1): 75, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36334179

ABSTRACT

Quorum sensing (QS) is a system of bacteria in which cells communicate with each other; it is linked to cell density in the microbiome. The high-density colony population can provide enough small molecular signals to enable a range of cellular activities, gene expression, pathogenicity, and antibiotic resistance that cause damage to the hosts. QS is the basis of chronic illnesses in human due to microbial sporulation, expression of virulence factors, biofilm formation, secretion of enzymes, or production of membrane vesicles. The transfer of antimicrobial resistance gene (ARG) among antibiotic resistance bacteria is a major public health concern. QS-mediated biofilm is a hub for ARG horizontal gene transfer. To develop innovative approach to prevent microbial pathogenesis, it is essential to understand the role of QS especially in response to environmental stressors such as exposure to antibiotics. This review provides the latest knowledge on the relationship of QS and pathogenicity and explore the novel approach to control QS via quorum quenching (QQ) using QS inhibitors (QSIs) and QQ enzymes. The state-of-the art knowledge on the role of QS and the potential of using QQ will help to overcome the threats of rapidly emerging bacterial pathogenesis.


Subject(s)
Anti-Infective Agents , Quorum Sensing , Humans , Quorum Sensing/physiology , Virulence , Environmental Monitoring , Bacteria , Biofilms , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/metabolism , Anti-Infective Agents/metabolism
5.
Arch Microbiol ; 204(10): 642, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36161364

ABSTRACT

Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.


Subject(s)
Environmental Pollutants , Laccase , Bacillus , Biodegradation, Environmental , Esters , Glucose , Laccase/metabolism , Lignin/metabolism , Micrococcus luteus/metabolism , Peptones , Peroxidases/metabolism , Wastewater/toxicity
6.
Environ Res ; 212(Pt D): 113538, 2022 09.
Article in English | MEDLINE | ID: mdl-35640707

ABSTRACT

In this study, a bacterial carbonic anhydrase (CA) was purified from Corynebacterium flavescens for the CO2 conversion into CaCO3. The synthesized CaCO3 can be utilized in the papermaking industry as filler material, construction material and in steel industry. Herein, the CA was purified by using a Sephadex G-100 column chromatography having 29.00 kDa molecular mass in SDS-PAGE analysis. The purified CA showed an optimal temperature of 35 °C and pH 7.5. In addition, a kinetic study of CA using p-NPA as substrate showed Vmax (166.66 µmoL/mL/min), Km (5.12 mM), and Kcat (80.56 sec-1) using Lineweaver Burk plot. The major inhibitors of CA activity were Na2+, K+, Mn2+, and Al3+, whereas Zn2+ and Fe2+ slightly enhanced it. The purified CA showed a good efficacy to convert the CO2 into CaCO3 with a total conversion rate of 65.05 mg CaCO3/mg of protein. In silico analysis suggested that the purified CA has conserved Zn2+ coordinating residues such as His 111, His 113, and His 130 in the active site center. Further analysis of the CO2 binding site showed conserved residues such as Val 132, Val 142, Leu 196, Thr 197, and Val 205. However, a substitution has been observed where Trp 208 of its closest structural homolog T. ammonificans CA is replaced with Arg 207 of C. flavescens. The presence of a hydrophilic mutation in the CO2 binding hydrophobic region is a further subject of investigation.


Subject(s)
Carbonic Anhydrases , Calcium Carbonate , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Electrophoresis, Polyacrylamide Gel , Temperature
7.
Chemosphere ; 300: 134586, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35427655

ABSTRACT

Distillery wastewater has high biological and chemical oxygen demand and requires additional treatment before it can be safely discharged into receiving water. It is usually processed through a biomethanation digester and the end product is the post-methanated distillery effluent (PMDE). Research have shown that PMDE released by molasses-based distilleries is a hazardous effluent that can cause harm to the biota and the environment; it contains elevated amount of total dissolved solids (TDS), total suspended solids (TSS) and excess levels of persistent organic compounds (POPs), heavy metals, phenolic compounds, and salts. The practice of wastewater reuse for irrigation in many water scarce countries necessitates the proper treatment of PMDE before it is discharged into receiving water. Convention methods have been in practice for decades, but innovative technologies are needed to enhance the efficiency of PMDE treatment. Advance physical treatment such as membrane separation technology using graphene, ion-exchange and ultrafiltration membranes; chemical treatment such as advanced oxidation methods, electrocoagulation and photocatalytic technologies; biological treatment such as microbial and enzymatic treatment; and hybrid treatment such as microbial-fuel cell (MFC), genetically modified organisms (GMO) and constructed wetland technologies, are promising new methods to improve the quality of PMDE. This review provides insight into current accomplishments evaluates their suitability and discusses future developments in the detoxification of PMDE. The consolidated knowledge will help to develop a better management for the safe disposal and the reuse of PMDE wastewater.


Subject(s)
Environmental Pollutants , Industrial Waste , Biological Oxygen Demand Analysis , Waste Disposal, Fluid/methods , Wastewater , Water
8.
Chemosphere ; 295: 133892, 2022 May.
Article in English | MEDLINE | ID: mdl-35134397

ABSTRACT

Due to the presence of various organic contaminants, improper disposal of pulp-paper wastewater poses harm to the environment and human health. In this work, pulp-paper sludge (PPS) after secondary treatment were collected from M/s Century Pulp-paper Mills in India, the chemical nature of the organic pollutants was determined after solvent extraction. All the isolates were able to produce lipase (6.34-3.93 U ml-1) which could account for the different fatty acids detected in the PPS. The dominant strains were in the classes of α and γ Proteobacteria followed by Firmicutes. The Shannon-Weiner diversity indexes for phylotype richness for the culturable and non-culturable bacterial community were 2.01 and 3.01, respectively, indicating the non-culturable bacterial strains has higher species richness and diversity compared to the culturable bacterial strains. However, the culturable strains had higher species evenness (0.94 vs 0.90). Results suggested only a few isolated strains were resistant to the POPs in the PPS, where as non-cultural bacteria survived by entering viable but non-cultural state. The isolated strains (Brevundimonas diminuta, Aeromonas punctata, Enterobacter hormaechei, Citrobacter braakii, Bacillus pumilus and Brevundimonas terrae) are known for their multidrug resistance but their tolerance to POPs have not previously been reported and deserved further investigation. The findings of this research established the presence of POPs which influence the microbial population. Tertiary treatment is recommended prior to the safe disposal of pulp paper mill waste into the environment.


Subject(s)
Sewage , Waste Disposal, Fluid , Bacteria , Humans , Industrial Waste/analysis , Paper , Persistent Organic Pollutants , Sewage/microbiology , Waste Disposal, Fluid/methods
9.
Environ Res ; 208: 112709, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35032541

ABSTRACT

Elevated levels of physico-chemical pollution including organic pollutants, metals and metalloids were detected in distillery sludges despite of the anaerobic digestion treatment prior to disposal. The concentrations of the metals were (in mg kg-1): Fe (400.98 ± 3.11), Zn (17.21 ± 0.54), Mn (8.32 ± 0.42), Ni (8.00 ± 0.98), Pb (5.09 ± 0.43), Cr (4.00 ± 0.98), and Cu (3.00 ± 0.10). An invasive grass species, Cynodon dactylon L., demonstrated its ability to remediate the distillery waste sludge (DWS) in the field study. All the physico-chemical parameters of the sludge significantly improved (up to 70-75%) in the presence of Cynodon dactylon L. (p < 0.001) than the control with no plant growth. The highest phytoremediation capacity was associated with the uptake of Fe in the root and shoot. Sludge samples collected near the rhizosphere also showed lower amount of organic compounds compared to control sludge samples. Metal resistant Bacillus cereus (RCS-4 MZ520573.1) was isolated from the rhizosphere of Cynodon dactylon L. and showed potential to enhance the process of phytoremediation via plant growth promoting activities such as production of high level of ligninolytic enzymes: manganese peroxidase (35.98 U), lignin peroxidase (23.98 U) and laccase (12.78 U), indole acetic acid (45.87(mgL-1), phosphatase activity (25.76 mg L-1) and siderophore production (23.09 mg L-1). This study presents information on the performance of Cynodon dactylon L., an abundant invasive perennial grass species and its associated plant growth promoting rhizobacteria demonstrated good capacity to remediate and restore contaminated soil contained complex organic and inorganic pollutants, they could be integrated into the disposal system of distillery sludge to improve the treatment efficiency.


Subject(s)
Metals, Heavy , Soil Pollutants , Bacillus cereus , Biodegradation, Environmental , Cynodon , Metals, Heavy/analysis , Sewage , Soil Pollutants/analysis
10.
Environ Pollut ; 292(Pt A): 118267, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34601036

ABSTRACT

Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28-39%), Firmicutes (20-28%), Bacteriodetes (9-10%), Actinobacteria (5-10%), Tenericutes (1-9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1-2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.


Subject(s)
Environmental Pollutants , Microbiota , Saccharum , Molasses , Sewage , Waste Disposal, Fluid , Wastewater
11.
Environ Pollut ; 292(Pt B): 118342, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34653589

ABSTRACT

Restoring an environment contaminated with persistent organic pollutants (POPs) is highly challenging. Biodegradation by biofilm-forming bacteria through quorum sensing (QS) is a promising treatment process to remove these pollutants and promotes eco-restoration. QS plays an important role in biofilm formation, solubilization, and biotransformation of pollutants. QS is a density-based communication between microbial cells via signalling molecules, which coordinates specific characters and helps bacteria to acclimatize against stress conditions. Genetic diversification of a biofilm offers excellent opportunities for horizontal gene transfer, improves resistance against stress, and provides a suitable environment for the metabolism of POPs. To develop this technology in industrial scale, it is important to understand the fundamentals and ubiquitous nature of QS bacteria and appreciate the role of QS in the degradation of POPs. Currently, there are knowledge gaps regarding the environmental niche, abundance, and population of QS bacteria in wastewater treatment systems. This review aims to present up-to-date and state-of-the-art information on the roles of QS and QS-mediated strategies in industrial waste treatment including biological treatments (such as activated sludge), highlighting their potentials using examples from the pulp and paper mill industry, hydrocarbon remediation and phytoremediation. The information will help to provide a throughout understanding of the potential of QS to degrade POPs and advance the use of this technology. Current knowledge of QS strategies is limited to laboratory studies, full-scale applications remain challenging and more research is need to explore QS gene expression and test in full-scale reactors for wastewater treatment.


Subject(s)
Industrial Waste , Quorum Sensing , Biofilms , Persistent Organic Pollutants , Sewage
12.
Bioresour Technol ; 338: 125518, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34273628

ABSTRACT

This study aimed to detoxify and degrade the organometallic pollutants from distillery wastewater by using an autochthonous microbial community via biostimulation and bioaugmentation process. Results revealed that the wastewater contained high concentrations of the metals i.e. Fe-2403; Zn-210.15; Cr- 22.825; Cu-73.62; Mg-27.30; Ni-14.425; and Pb-17.33 (mg L-1). The biostimulation and bioaugmentation process resulted from a substantial reduction (50-70%) in the pollution load. Scanning electron microscopy analysis showed bacterial community and their relationship with complex organometallic pollutants during the chemical reactions. The major identified organic pollutants in the control (untreated) samples were acetic acid, Oxo-,trimethylsilyl ester [CAS], Hydrocinnamic acid, p-[Trimethylsiloxy]-trimethylsilyl ester and tetradecanoic acid, trimethylsilyl ester [CAS] while some new metabolic products were generated as a by-product in bioaugmentation process. Therefore, the study showed that biostimulation and bioaugmentation were successful bioremediation strategies for the detoxification of distillery wastewater and restoration of organometallic polluted sites.


Subject(s)
Environmental Pollutants , Soil Pollutants , Bacteria , Biodegradation, Environmental , Wastewater
13.
Bioresour Technol ; 333: 125192, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33915458

ABSTRACT

This study aimed to assess the phytoremediation potential of Ricinus communis L. for heavy metals remediation via rhizospheric bacterial activities for distillery wastewater detoxification and management. Results revealed that distillery wastewater contained high levels of metals and other physico-chemical pollution parameters that could cause environmental pollution and aquatic toxicity. The identified bacterium produced several plant growth-promoting compounds including siderophores, ligninolytic enzymes, and indole acetic acid that resulted in nutrient enhancement and improved mineralization of metals in the plants during stress conditions. The bioconcentration factor (BCF) of all the metals examined were > 1, which showed that these metals are accumulating in the root, shoot, and leaves of Ricinus communis L. Most of the metals are stablised in the roots but Pb, Cd and Zn were translocated more to the shoorts (TC>1). The ability of Ricinus communis L. to grow in metals-containing distillery wastewater and reduce heavy metals and organic contaminants suggests that it can be used to provide an effective treatment of distillery wastewater. The use of Ricinus communis L. is an eco-friendly tool for the reduction of organometallic contamination and protecting agricultural land.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Metals, Heavy/analysis , Plant Roots/chemistry , Ricinus , Soil Pollutants/analysis , Wastewater
14.
Bioresour Technol ; 324: 124681, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33454444

ABSTRACT

This work aimed to study the profiling and efficiency of microbial communities and their abundance in the pulp and paper industry wastewater, which contained toxic metals, high biological oxygen demands, chemical oxygen demand, and ions contents. Sequence alignment of the 16S rRNA V3-V4 variable region zone with the Illumina MiSeq framework revealed 25356 operating taxonomical units (OTUs) derived from the wastewater sample. The major phyla identified in wastewater were Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi, Actinobacteria, Spirochetes, Patesibacteria, Acidobacteria, and others including unknown microbes. The study showed the function of microbial communities essential for the oxidation and detoxifying of complex contaminants and design of effective remediation techniques for the re-use of polluted wastewater. Findings demonstrated that the ability of different classes of microbes to adapt and survive in metal-polluted wastewater irrespective of their relative distribution, as well as further attention can be provided to its use in the bioremediation process.


Subject(s)
Microbiota , Wastewater , Acidobacteria , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
15.
Bioresour Technol ; 319: 124147, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32992272

ABSTRACT

The aims of the study was the evaluation of phytoremediation potential by Eclipta alba (L) and Alternanthera philoxeroide (L) of pulp and paper mill waste after secondary treatment which a source of aquatic and soil pollution due to huge discharge of organometallic compounds per tone of paper production. The result revealed 50% reduction of pollution parameters after in-situ phytoremediation. The comparative analysis of metal and metalloids showed the highest accumulation of Fe (2251.24 ± 64.74) in both plants. The antioxidant activity, chlorophyll and carotenoid content were increased in E. alba (L.) and A. philoxeroide (L.) respectively. From the results, it was concluded that E. alba (L.) and A. philoxeroide (L.) could be effectively used for the removal of metals and metalloids from effluent and sludge of pulp and paper mill waste that may help to reduce adverse health effects of metal accumulation in humans and animals via their food chain.


Subject(s)
Eclipta , Metalloids , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Industrial Waste/analysis , Metals , Metals, Heavy/analysis , Soil Pollutants/analysis
16.
Bioresour Technol ; 320(Pt B): 124353, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33202343

ABSTRACT

This work aimed to study Bacillus sp. PS-6 assisted phytoremediation of metals from pulp and paper industry wastewater as a novel green technique for the removal of metals of wastewater. Results revealed that heavy metal (mg L-1) contents in wastewater were reduced after in-situ phytoremediation for Fe, Cu, Zn, Cd, Mn, Ni, Pb, and As. Phragmites communis showed higher potential for the enrichment of Fe, Cu, Zn, Cd, Mn, Ni, Pb, and As in its rhizomes, roots, and shoots compared to leaves. The strain produced indole acetic acid, siderophores, and hydrolytic and ligninolytic enzymes, and resulted in nutrients solubilization. Results offer potential basis for the removal of metals from pulp and paper industry wastewater at large scale and prevention of pollution.


Subject(s)
Bacillus , Metals, Heavy , Soil Pollutants , Water Purification , Biodegradation, Environmental , Metals, Heavy/analysis , Propanolamines , Soil Pollutants/analysis
17.
Heliyon ; 6(7): e04559, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760841

ABSTRACT

The present manuscript has focused on the heavy metal; accumulation potential by common native plants i.e. Chenopodium album L., Ricinus communis, Ranunculus sceleratus, and Rumex dentatus growing on the disposed of pulp and paper mill effluent sludge. The sludge showed the abundance of benzene propanoic acid tert- butyldimethylsilyl ester, Octadecanoic acid, TMS, Hexadecanoic acid, TMS, cinnamic acid-α-phenyl-TMS ester, ß-sitosterol TMS, 4-mercaptobenzoic acid as residual complex organic compounds along with heavy metals Fe (98.30 mg/L-1), Zn (51.00 mg/L-1), Cu (3.21 mg/L-1), Cd (9.11 mg/L-1), Mn (18.27 mg/L-1), Ni (5.21 mg/L-1), (Hg 0.014 mg/L-1) which were above the prescribed limit of environmental standard. The complexation of organic compounds with heavy metal restricts the bioavailability of metals to plants. But the metal analysis in various parts of the plant showed a significant amount of metal accumulation. Further, histological observations of root tissue through TEM showed apparent deposition of metal granules near the cell wall and vacuole as adoption features of plants. But the variable concentration of metal accumulation in different parts by various plants indicated the variable potential of tested plants with various metals. This also indicated their metal bio-availability and movement to plant tissue. Further, their bioconcentration factor (BCF) and translocation factor (TF) > 1.0 indicated the hyperaccumulation tendency of plants Mn was accumulated maximum in leaves C. album (69.38 mg/kg-1) followed by Cu (25.75 mg/kg -1), As (23.20 mg/kg -1), Fe (20.90 mg/kg -1) and Pb was maximum accumulated (22.41 mg/kg -1) in R. cummunis leaves. The result revealed that arsenic has been accumulated in higher amount root, shoot and leaves of all tested plants. The metal accumulator plants showed phytoremediation potential also by reducing various pollution parameters after growth on sludge. These potential plants may be used as biotechnological tools for the eco-restoration of polluted sites.

18.
Front Microbiol ; 9: 960, 2018.
Article in English | MEDLINE | ID: mdl-29867864

ABSTRACT

Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.

19.
3 Biotech ; 8(4): 187, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29556441

ABSTRACT

The extracted sugarcane molasses-melanoidins showed the presence of Mn (8.20), Cr (2.97), Zn (16.61), Cu (2.55), Fe (373.95), Pb (2.59), and Ni (4.18 mg L-1) along with mixture of other organic compounds which have endocrine-disrupting chemicals (EDCs) properties. A consortium of aerobic bacteria comprising Klebsiella pneumoniae (KU321273), Salmonella enteric (KU726954), Enterobacter aerogenes (KU726955), and Enterobacter cloacae (KU726957) showed the optimum decolourisation of molasses-melanoidins up to 81% through co-metabolism in the presence of glucose (1.0%) and peptone (0.2%) as a carbon and nitrogen source, respectively. The absorption spectrum scanning by UV-visible spectrophotometer between 200 and 700 nm revealed reductions of absorption spectrum of organic compounds present in bacterial degraded sample of melanoidins in range of 200-450 nm compared to control. The degradation and decolourisation of melanoidins by bacterial consortium was noted by induction of manganese peroxidase and laccase activities in sample supernatant. Furthermore, the TLC and HPLC analysis of bacterial decolourised melanoidins also showed degradation and reduction of absorption peak at (295 nm), respectively. Furthermore, FT-IR and GC-MS analysis also showed the change of functional group and disappearance of ion peaks. This indicated the degradation and depolymerisation of melanoidins and cleavage of C=C, C=O and C≡N conjugated bonds which resulted in reduction of colour. The metabolic analysis also showed the disappearance of some organic compounds and generation of new metabolites. Furthermore, the seed germination test using Phaseolus mungo L. showed toxicity reduction in decolourized effluent.

20.
Mol Neurobiol ; 54(6): 4738-4755, 2017 08.
Article in English | MEDLINE | ID: mdl-27480264

ABSTRACT

Unwarranted exposure due to liberal use of metals for maintaining the lavish life and to achieve the food demand for escalating population along with an incredible boost in the average human life span owing to orchestrated progress in rejuvenation therapy have gradually increased the occurrence of Parkinson's disease (PD). Etiology is albeit elusive; association of PD with metal accumulation has never been overlooked due to noteworthy similitude between metal-exposure symptoms and a few cardinal features of disease. Even though metals are entailed in the vital functions, a hysterical shift, primarily augmentation, escorts the stern nigrostriatal dopaminergic neurodegeneration. An increase in the passage of metals through the blood brain barrier and impaired metabolic activity and elimination system could lead to metal accumulation in the brain, which eventually makes dopaminergic neurons quite susceptible. In the present article, an update on implication of metal accumulation in PD/Parkinsonism has been provided. Moreover, encouraging and paradoxical facts and fictions associated with metal accumulation in PD/Parkinsonism have also been compiled. Systematic literature survey of PD is performed to describe updated information if metal accumulation is an epicenter or merely an outcome. Finally, a perspective on the association of metal accumulation with pesticide-induced Parkinsonism has been explained to unveil the likely impact of the former in the latter.


Subject(s)
Metals/metabolism , Parkinson Disease/metabolism , Animals , Brain/metabolism , Brain/pathology , Environmental Exposure , Humans , Pesticides/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...