Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Rev Rep ; 17(5): 1827-1839, 2021 10.
Article in English | MEDLINE | ID: mdl-33954878

ABSTRACT

Cancer is a devastating disease whose incidence has increased in recent times and early detection can lead to effective treatment. Existing detection tools suffer from low sensitivity and specificity, and are high cost, invasive and painful procedures. Cancers affecting different tissues, ubiquitously express embryonic markers including Oct-4A, whose expression levels have also been correlated to staging different types of cancer. Cancer stem cells (CSCs) that initiate cancer are possibly the 'transformed' and pluripotent very small embryonic-like stem cells (VSELs) that also express OCT-4A. Excessive self-renewal of otherwise quiescent, pluripotent VSELs in normal tissues possibly initiates cancer. In an initial study on 120 known cancer patients, it was observed that Oct-4A expression in peripheral blood correlated well with the stage of cancer. Based on these results, we developed a proprietary HrC scale wherein fold change of OCT-4A was linked to patient status - it is a numerical scoring system ranging from non-cancer (0-2), inflammation (>2-6), high-risk (>6-10), stage I (>10-20), stage II (>20-30), stage III (>30-40), and stage IV (>40) cancers. Later the scale was validated on 1000 subjects including 500 non-cancer and 500 cancer patients. Ten case studies are described and show (i) HrC scale can detect cancer, predict and monitor treatment outcome (ii) is superior to evaluating circulating tumor cells and (iii) can also serve as an early biomarker. HrC method is a novel breakthrough, non-invasive, blood-based diagnostic tool that can detect as well as classify solid tumors, hematological malignancies and sarcomas, based on their stage.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Octamer Transcription Factor-3
2.
Stem Cell Rev Rep ; 14(2): 213-222, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29177909

ABSTRACT

Resveratrol generated enormous interest as it improved functions of multiple organs and could delay aging in animal models. However, basic mechanism of action was not understood and due to poor bioavailability, it has failed to enter the market. A highly active nano-formulation of resveratrol (XAR™) with enhanced bioavailability is now available. Present study was undertaken to evaluate its effects on stem cells biology in the human peripheral blood. Twelve healthy participants were enrolled of which five received XAR™, five were age-matched placebo controls and two were 76 and 85 years old. Peripheral blood was processed to study serum profile to monitor cardiac and pancreatic functions and subjected to density gradient centrifugation to enrich pluripotent (VSELs) and adult stem cells that get enriched along with red blood cells and in the Buffy coat respectively on Day 2 and Day 15 after XAR™ treatment. The XAR™ treatment resulted in an increased expression of pluripotency transcripts specific for VSELs (Oct-4A, Nanog and Sox2) on D2; specific transcripts for differentiation in the progenitors including Oct-4, Ikaros, CD14, CD90 on D15, and anti-ageing and tumor suppressor transcripts NAD, SIRT1, SIRT6 and p53 in both stem cells and progenitors. An improvement of cardiac and pancreatic markers in serum profile was also observed on D15. The decline in VSELs numbers with age and beneficial effects of the XAR™ treatment were evident by up-regulation of specific transcripts and on serum profile. XAR™ is a promising molecule that has the potential to activate pluripotent VSELs and tissue committed adult stem cells 'progenitors' resulting in the rejuvenation of various body tissues and for improved, cancer-free health with advanced age.


Subject(s)
Resveratrol/pharmacology , Stem Cells/cytology , Stem Cells/drug effects , Adult , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Blood Buffy Coat/cytology , Female , Humans , Male , Middle Aged , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Proliferating Cell Nuclear Antigen/metabolism , SOXB1 Transcription Factors/metabolism , Sirtuin 1/metabolism , Sirtuins/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...