Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(15): 21102-21115, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510193

ABSTRACT

We demonstrate optical waveguides fabricated in periodically poled MgO-doped stoichiometric lithium tantalate crystals using an fs-laser direct-write process. Two different waveguide architectures were developed: depressed cladding and stress-induced waveguides. Our strain-optic simulations confirmed the guiding mechanism for either case. We demonstrate designs optimized for low propagation loss (0.52 dB/cm) for both fundamental (1050 nm) and second-harmonic wavelengths (525 nm). Low-power CW second-harmonic-generation studies show normalized efficiencies comparable to that of annealed reverse-proton-exchange waveguides in lithium niobate. High-power studies demonstrate second-harmonic power levels up to 8.5 W in a single-pass configuration, using a 1-nm bandwidth CW IR fiber laser as a pump.

2.
Chemosphere ; 185: 171-177, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28692884

ABSTRACT

Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO4) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns.


Subject(s)
Calcium Compounds/chemistry , Environmental Restoration and Remediation/methods , Oxides/chemistry , Water Pollutants, Radioactive/chemistry , Radioactive Waste , Radioisotopes , Solubility , Technetium/analysis , Uranium/analysis , Water
3.
Nano Lett ; 15(4): 2612-9, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25723259

ABSTRACT

Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS2 to MoSe2 to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current-voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers.


Subject(s)
Disulfides/chemistry , Disulfides/radiation effects , Electrochemistry/instrumentation , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Molybdenum/chemistry , Molybdenum/radiation effects , Photochemistry/instrumentation , Alloys/chemistry , Alloys/radiation effects , Crystallization/methods , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Gases/chemistry , Light , Linear Models , Materials Testing , Models, Chemical , Nanotechnology/instrumentation , Nanotechnology/methods , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...