Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Article in English | MEDLINE | ID: mdl-38609673

ABSTRACT

The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.

2.
Ann Clin Transl Neurol ; 11(1): 67-78, 2024 01.
Article in English | MEDLINE | ID: mdl-37932907

ABSTRACT

OBJECTIVE: Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset. METHODS: Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day-to-day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed. RESULTS: MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI-T2 ), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI-T2 . INTERPRETATION: MR measures of FF and MRI T2 are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnostic imaging , Clinical Relevance , Reproducibility of Results , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Biomarkers , Disease Progression
3.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1437-1449, 2023 10.
Article in English | MEDLINE | ID: mdl-37534782

ABSTRACT

Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Biomarkers , Outcome Assessment, Health Care
4.
Neurology ; 99(21): e2406-e2416, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36240102

ABSTRACT

BACKGROUND AND OBJECTIVES: Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS: One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS: Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION: The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Humans , Dystrophin/genetics , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Exons , Magnetic Resonance Imaging/methods , Disease Progression
5.
J Neuromuscul Dis ; 9(2): 289-302, 2022.
Article in English | MEDLINE | ID: mdl-35124659

ABSTRACT

BACKGROUND: Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle. OBJECTIVE: To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS). METHODS: In this longitudinal study, range of motion (ROM) was measured annually at the hip, knee, and ankle, and at the elbow, forearm, and wrist at a subset of visits. Ambulatory function (10 meter walk/run and 6 minute walk test) and MR-determined muscle quality (transverse relaxation time (T2) and fat fraction) were measured at each visit. RESULTS: In 178 boys with DMD, contracture prevalence and severity increased with age. Among ambulatory participants, more severe contractures (defined as greater loss of ROM) were significantly associated with worse ambulatory function, and across all participants, more severe contractures significantly associated with higher MRI T2 or MRS FF (ρ: 0.40-0.61 in the lower extremity; 0.20-0.47 in the upper extremity). Agonist/antagonist differences in MRI T2 were not strong predictors of ROM. CONCLUSIONS: Contracture severity increases with disease progression (increasing age and muscle involvement and decreasing functional ability), but is only moderately predicted by muscle fatty infiltration and MRI T2, suggesting that other changes in the muscle, tendon, or joint contribute meaningfully to contracture formation in DMD.


Subject(s)
Contracture , Muscle, Skeletal , Contracture/diagnostic imaging , Contracture/etiology , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Male , Muscle, Skeletal/diagnostic imaging , Range of Motion, Articular
6.
Chest ; 161(3): 753-763, 2022 03.
Article in English | MEDLINE | ID: mdl-34536384

ABSTRACT

BACKGROUND: Expiratory muscle weakness and impaired airway clearance are early signs of respiratory dysfunction in Duchenne muscular dystrophy (DMD), a degenerative muscle disorder in which muscle cells are damaged and replaced by fibrofatty tissue. Little is known about expiratory muscle pathology and its relationship to cough and airway clearance capacity; however, the level of muscle replacement by fat can be estimated using MRI and expressed as a fat fraction (FF). RESEARCH QUESTION: How does abdominal expiratory muscle fatty infiltration change over time in DMD and relate to clinical expiratory function? STUDY DESIGN AND METHODS: Individuals with DMD underwent longitudinal MRI of the abdomen to determine FF in the internal oblique, external oblique, and rectus abdominis expiratory muscles. FF data were used to estimate a model of expiratory muscle degeneration by using nonlinear mixed effects and a cumulative distribution function. FVC, maximal inspiratory and expiratory pressures, and peak cough flow were collected as clinical correlates to MRI. RESULTS: Forty individuals with DMD (aged 6-18 years at baseline) participated in up to five visits over 36 months. Modeling estimated the internal oblique progresses most quickly and reached 50% replacement by fat at a mean patient age of 13.0 years (external oblique, 14.0 years; rectus abdominis, 16.2 years). Corticosteroid-untreated individuals (n = 4) reached 50% muscle replacement by fat 3 to 4 years prior to treated individuals. Individuals with mild clinical dystrophic phenotypes (n = 3) reached 50% muscle replacement by fat 4 to 5 years later than corticosteroid-treated individuals. Internal and external oblique FFs near 50% were associated with maximal expiratory pressures < 60 cm H2O and peak cough flows < 270 L/min. INTERPRETATION: These data improve understanding of the early phase of respiratory compromise in DMD, which typically presents as airway clearance dysfunction prior to the onset of hypoventilation, and links expiratory muscle fatty infiltration to pulmonary function measures.


Subject(s)
Muscular Dystrophy, Duchenne , Adrenal Cortex Hormones/therapeutic use , Cough , Humans , Magnetic Resonance Imaging , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/diagnostic imaging , Respiratory Muscles
7.
Neuromuscul Disord ; 31(5): 385-396, 2021 05.
Article in English | MEDLINE | ID: mdl-33678513

ABSTRACT

Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.


Subject(s)
Arachidonic Acids/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , NF-kappa B , Salicylamides/therapeutic use , Child , Child, Preschool , Disease Progression , Double-Blind Method , Dystrophin/genetics , Humans , Male , Muscle, Skeletal , Proof of Concept Study
8.
Radiology ; 295(3): 616-625, 2020 06.
Article in English | MEDLINE | ID: mdl-32286193

ABSTRACT

Background Upper extremity MRI and proton MR spectroscopy are increasingly considered to be outcome measures in Duchenne muscular dystrophy (DMD) clinical trials. Purpose To demonstrate the feasibility of acquiring upper extremity MRI and proton (1H) MR spectroscopy measures of T2 and fat fraction in a large, multicenter cohort (ImagingDMD) of ambulatory and nonambulatory individuals with DMD; compare upper and lower extremity muscles by using MRI and 1H MR spectroscopy; and correlate upper extremity MRI and 1H MR spectroscopy measures to function. Materials and Methods In this prospective cross-sectional study, MRI and 1H MR spectroscopy and functional assessment data were acquired from participants with DMD and unaffected control participants at three centers (from January 28, 2016, to April 24, 2018). T2 maps of the shoulder, upper arm, forearm, thigh, and calf were generated from a spin-echo sequence (repetition time msec/echo time msec, 3000/20-320). Fat fraction maps were generated from chemical shift-encoded imaging (eight echo times). Fat fraction and 1H2O T2 in the deltoid and biceps brachii were measured from single-voxel 1H MR spectroscopy (9000/11-243). Groups were compared by using Mann-Whitney test, and relationships between MRI and 1H MR spectroscopy and arm function were assessed by using Spearman correlation. Results This study evaluated 119 male participants with DMD (mean age, 12 years ± 3 [standard deviation]) and 38 unaffected male control participants (mean age, 12 years ± 3). Deltoid and biceps brachii muscles were different in participants with DMD versus control participants in all age groups by using quantitative T2 MRI (P < .001) and 1H MR spectroscopy fat fraction (P < .05). The deltoid, biceps brachii, and triceps brachii were affected to the same extent (P > .05) as the soleus and medial gastrocnemius. Negative correlations were observed between arm function and MRI (T2: range among muscles, ρ = -0.53 to -0.73 [P < .01]; fat fraction, ρ = -0.49 to -0.70 [P < .01]) and 1H MR spectroscopy fat fraction (ρ = -0.64 to -0.71; P < .01). Conclusion This multicenter study demonstrated early and progressive involvement of upper extremity muscles in Duchenne muscular dystrophy (DMD) and showed the feasibility of MRI and 1H MR spectroscopy to track disease progression over a wide range of ages in participants with DMD. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Arm/diagnostic imaging , Leg/diagnostic imaging , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Duchenne/diagnostic imaging , Proton Magnetic Resonance Spectroscopy/methods , Adolescent , Case-Control Studies , Child , Cohort Studies , Cross-Sectional Studies , Disease Progression , Feasibility Studies , Humans , Male , Outcome Assessment, Health Care , Prospective Studies
9.
Neurology ; 94(15): e1622-e1633, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32184340

ABSTRACT

OBJECTIVE: To quantify disease progression in individuals with Duchenne muscular dystrophy (DMD) using magnetic resonance biomarkers of leg muscles. METHODS: MRI and magnetic resonance spectroscopy (MRS) biomarkers were acquired from 104 participants with DMD and 51 healthy controls using a prospective observational study design with patients with DMD followed up yearly for up to 6 years. Fat fractions (FFs) in vastus lateralis and soleus muscles were determined with 1H MRS. MRI quantitative T2 (qT2) values were measured for 3 muscles of the upper leg and 5 muscles of the lower leg. Longitudinal changes in biomarkers were modeled with a cumulative distribution function using a nonlinear mixed-effects approach. RESULTS: MRS FF and MRI qT2 increased with DMD disease duration, with the progression time constants differing markedly between individuals and across muscles. The average age at half-maximal muscle involvement (µ) occurred 4.8 years earlier in vastus lateralis than soleus, and these measures were strongly associated with loss-of-ambulation age. Corticosteroid treatment was found to delay µ by 2.5 years on average across muscles, although there were marked differences between muscles with more slowly progressing muscles showing larger delay. CONCLUSIONS: MRS FF and MRI qT2 provide sensitive noninvasive measures of DMD progression. Modeling changes in these biomarkers across multiple muscles can be used to detect and monitor the therapeutic effects of corticosteroids on disease progression and to provide prognostic information on functional outcomes. This modeling approach provides a method to transform these MRI biomarkers into well-understood metrics, allowing concise summaries of DMD disease progression at individual and population levels. CLINICALTRIALSGOV IDENTIFIER: NCT01484678.


Subject(s)
Biomarkers/analysis , Leg/physiopathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/physiopathology , Adolescent , Adrenal Cortex Hormones/metabolism , Adrenal Cortex Hormones/pharmacology , Child , Child, Preschool , Disease Progression , Female , Humans , Leg/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/drug therapy , Walking/physiology
10.
Neurology ; 94(9): e897-e909, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32024675

ABSTRACT

OBJECTIVE: To investigate the potential of lower extremity magnetic resonance (MR) biomarkers to serve as endpoints in clinical trials of therapeutics for Duchenne muscular dystrophy (DMD) by characterizing the longitudinal progression of MR biomarkers over 48 months and assessing their relationship to changes in ambulatory clinical function. METHODS: One hundred sixty participants with DMD were enrolled in this longitudinal, natural history study and underwent MR data acquisition of the lower extremity muscles to determine muscle fat fraction (FF) and MRI T2 biomarkers of disease progression. In addition, 4 tests of ambulatory function were performed. Participants returned for follow-up data collection at 12, 24, 36, and 48 months. RESULTS: Longitudinal analysis of the MR biomarkers revealed that vastus lateralis FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 biomarkers were the fastest progressing biomarkers over time in this primarily ambulatory cohort. Biomarker values tended to demonstrate a nonlinear, sigmoidal trajectory over time. The lower extremity biomarkers predicted functional performance 12 and 24 months later, and the magnitude of change in an MR biomarker over time was related to the magnitude of change in function. Vastus lateralis FF, soleus FF, vastus lateralis MRI T2, and biceps femoris long head MRI T2 were the strongest predictors of future loss of function, including loss of ambulation. CONCLUSIONS: This study supports the strong relationship between lower extremity MR biomarkers and measures of clinical function, as well as the ability of MR biomarkers, particularly those from proximal muscles, to predict future ambulatory function and important clinical milestones. CLINICALTRIALSGOV IDENTIFIER: NCT01484678.


Subject(s)
Adipose Tissue/metabolism , Lower Extremity/physiopathology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Walking/physiology , Adolescent , Biomarkers/metabolism , Child , Child, Preschool , Disease Progression , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
11.
J Neurol ; 266(11): 2752-2763, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31350642

ABSTRACT

OBJECTIVE: Duchenne muscular dystrophy (DMD) is characterized by damage to muscles including the muscles involved in respiration. Dystrophic muscles become weak and infiltrated with fatty tissue, resulting in progressive respiratory impairment. The objective of this study was to assess respiratory muscle quality and function in DMD using magnetic resonance imaging and to determine the relationship to clinical respiratory function. METHODS: Individuals with DMD (n = 36) and unaffected controls (n = 12) participated in this cross sectional magnetic resonance imaging study. Participants underwent dynamic imaging of the thorax to assess diaphragm and chest wall mobility and chemical shift-encoded imaging of the chest and abdomen to determine fatty infiltration of the accessory respiratory muscles. Additionally, clinical pulmonary function measures were obtained. RESULTS: Thoracic cavity area was decreased in individuals with DMD compared to controls during tidal and maximal breathing. Individuals with DMD had reduced chest wall movement in the anterior-posterior direction during maximal inspirations and expirations, but diaphragm descent during maximal inspirations (normalized to height) was only decreased in a subset of individuals with maximal inspiratory pressures less than 60% predicted. Muscle fat fraction was elevated in all three expiratory muscles assessed (p < 0.001), and the degree of fatty infiltration correlated with percent predicted maximal expiratory pressures (r = - 0.70, p < 0.001). The intercostal muscles demonstrated minimal visible fatty infiltration; however, this analysis was qualitative and resolution limited. INTERPRETATION: This magnetic resonance imaging investigation of diaphragm movement, chest wall movement, and accessory respiratory muscle fatty infiltration provides new insights into the relationship between disease progression and clinical respiratory function.


Subject(s)
Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/physiopathology , Respiratory Muscles/diagnostic imaging , Cross-Sectional Studies , Diagnostic Imaging , Humans , Magnetic Resonance Imaging , Movement , Respiratory Muscles/physiopathology , Thoracic Cavity/diagnostic imaging , Thoracic Cavity/physiopathology
12.
Muscle Nerve ; 58(5): 631-638, 2018 11.
Article in English | MEDLINE | ID: mdl-29742798

ABSTRACT

INTRODUCTION: Tests of ambulatory function are common clinical trial endpoints in Duchenne muscular dystrophy (DMD). Using these tests, the ImagingDMD study has generated a large data set that can describe the contemporary natural history of DMD in 5-12.9-year-olds. METHODS: Ninety-two corticosteroid-treated boys with DMD and 45 controls participated in this longitudinal study. Participants performed the 6-minute walk test (6MWT) and timed function tests (TFT: 10-m walk/run, climbing 4 stairs, supine to stand). RESULTS: Boys with DMD had impaired functional performance even at 5-6.9 years old. Boys older than 7 had significant declines in function over 1 year for 10-m walk/run and 6MWT. Eighty percent of participants could perform all functional tests at 9 years old. TFTs appear to be slightly more responsive and predictive of disease progression than the 6MWT in 7-12.9 year olds. DISCUSSION: This study provides insight into the contemporary natural history of key functional endpoints in DMD. Muscle Nerve 58: 631-638, 2018.


Subject(s)
Magnetic Resonance Imaging , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/physiopathology , Outcome Assessment, Health Care , Walking/physiology , Adolescent , Age Factors , Child , Child, Preschool , Cohort Studies , Disease Progression , Female , Humans , Image Processing, Computer-Assisted , Male , Time Factors , Walk Test
13.
PLoS One ; 13(3): e0194283, 2018.
Article in English | MEDLINE | ID: mdl-29554116

ABSTRACT

OBJECTIVE: To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. METHODS: MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. RESULTS: Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. DISCUSSION: Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.


Subject(s)
Biomarkers , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/physiopathology , Child , Humans , Image Processing, Computer-Assisted , Male , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology
15.
Ann Neurol ; 79(4): 535-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26891991

ABSTRACT

OBJECTIVE: The aim of this study was to describe Duchenne muscular dystrophy (DMD) disease progression in the lower extremity muscles over 12 months using quantitative magnetic resonance (MR) biomarkers, collected across three sites in a large cohort. METHODS: A total of 109 ambulatory boys with DMD (8.7 ± 2.0 years; range, 5.0-12.9) completed baseline and 1-year follow-up quantitative MR imaging (transverse relaxation time constant; MRI-T2 ), MR spectroscopy (fat fraction and (1) H2 O T2 ), and 6-minute walk test (6MWT) measurements. A subset of boys completed additional measurements after 3 or 6 months. RESULTS: MRI-T2 and fat fraction increased significantly over 12 months in all age groups, including in 5- to 6.9-year-old boys. Significant increases in vastus lateralis (VL) fat fraction were observed in 3 and 6 months. Even in boys whose 6MWT performance improved or remained stable over 1 year, significant increases in MRI-T2 and fat fraction were found. Of all the muscles examined, the VL and biceps femoris long head were the most responsive to disease progression in boys with DMD. INTERPRETATION: MR biomarkers are responsive to disease progression in 5- to 12.9-year-old boys with DMD and able to detect subclinical disease progression in DMD, even within short (3-6 months) time periods. The measured sensitivity of MR biomarkers in this multicenter study may be critically important to future clinical trials, allowing for smaller sample sizes and/or shorter study windows in this fatal rare disease.


Subject(s)
Disease Progression , Leg/pathology , Magnetic Resonance Imaging/methods , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Biomarkers , Child , Child, Preschool , Exercise Test , Humans , Longitudinal Studies , Magnetic Resonance Spectroscopy , Male , Muscular Dystrophy, Duchenne/physiopathology
16.
PLoS One ; 9(9): e106435, 2014.
Article in English | MEDLINE | ID: mdl-25203313

ABSTRACT

INTRODUCTION: Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder that results in functional deficits. However, these functional declines are often not able to be quantified in clinical trials for DMD until after age 7. In this study, we hypothesized that (1)H2O T2 derived using (1)H-MRS and MRI-T2 will be sensitive to muscle involvement at a young age (5-7 years) consistent with increased inflammation and muscle damage in a large cohort of DMD subjects compared to controls. METHODS: MR data were acquired from 123 boys with DMD (ages 5-14 years; mean 8.6 SD 2.2 years) and 31 healthy controls (age 9.7 SD 2.3 years) using 3-Tesla MRI instruments at three institutions (University of Florida, Oregon Health & Science University, and Children's Hospital of Philadelphia). T2-weighted multi-slice spin echo (SE) axial images and single voxel 1H-MRS were acquired from the lower leg and thigh to measure lipid fraction and (1)H2O T2. RESULTS: MRI-T2, (1)H2O T2, and lipid fraction were greater (p<0.05) in DMD compared to controls. In the youngest age group, DMD values were different (p<0.05) than controls for the soleus MRI-T2, (1)H2O T2 and lipid fraction and vastus lateralis MRI-T2 and (1)H2O T2. In the boys with DMD, MRI-T2 and lipid fraction were greater (p<0.05) in the oldest age group (11-14 years) than the youngest age group (5-6.9 years), while 1H2O T2 was lower in the oldest age group compared to the young age group. DISCUSSION: Overall, MR measures of T2 and lipid fraction revealed differences between DMD and Controls. Furthermore, MRI-T2 was greater in the older age group compared to the young age group, which was associated with higher lipid fractions. Overall, MR measures of T2 and lipid fraction show excellent sensitivity to DMD disease pathologies and potential therapeutic interventions in DMD, even in the younger boys.


Subject(s)
Leg , Magnetic Resonance Imaging , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Adolescent , Age Distribution , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Disease Progression , Humans , Lipid Metabolism , Male
17.
Neurology ; 83(11): 974-80, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25098537

ABSTRACT

OBJECTIVE: To evaluate the effects of corticosteroids on the lower extremity muscles in boys with Duchenne muscular dystrophy (DMD) using MRI and magnetic resonance spectroscopy (MRS). METHODS: Transverse relaxation time (T2) and fat fraction were measured by MRI/MRS in lower extremity muscles of 15 boys with DMD (age 5.0-6.9 years) taking corticosteroids and 15 corticosteroid-naive boys. Subsequently, fat fraction was measured in a subset of these boys at 1 year. Finally, MRI/MRS data were collected from 16 corticosteroid-naive boys with DMD (age 5-8.9 years) at baseline, 3 months, and 6 months. Five boys were treated with corticosteroids after baseline and the remaining 11 served as corticosteroid-naive controls. RESULTS: Cross-sectional comparisons demonstrated lower muscle T2 and less intramuscular (IM) fat deposition in boys with DMD on corticosteroids, suggesting reduced inflammation/damage and fat infiltration with treatment. Boys on corticosteroids demonstrated less increase in IM fat infiltration at 1 year. Finally, T2 by MRI/MRS detected effects of corticosteroids on leg muscles as early as 3 months after drug initiation. CONCLUSIONS: These results demonstrate the ability of MRI/MRS to detect therapeutic effects of corticosteroids in reducing inflammatory processes in skeletal muscles of boys with DMD. Our work highlights the potential of MRI/MRS as a biomarker in evaluating therapeutic interventions in DMD.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Leg , Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Adipose Tissue/drug effects , Adipose Tissue/pathology , Adipose Tissue/physiopathology , Child , Child, Preschool , Cross-Sectional Studies , Humans , Leg/growth & development , Leg/pathology , Leg/physiopathology , Longitudinal Studies , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Muscle Strength/drug effects , Muscle, Skeletal/growth & development , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Treatment Outcome
18.
Magn Reson Med ; 72(1): 8-19, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24006208

ABSTRACT

PURPOSE: The relationship between fat fractions (FFs) determined based on multiple TE, unipolar gradient echo images and (1) H magnetic resonance spectroscopy (MRS) was evaluated using different models for fat-water decomposition, signal-to-noise ratios, and excitation flip angles. METHODS: A combination of single-voxel proton spectroscopy ((1) H-MRS) and gradient echo imaging was used to determine muscle FFs in both normal and dystrophic muscles. In order to cover a large range of FFs, the soleus and vastus lateralis muscles of 22 unaffected control subjects, 16 subjects with collagen VI deficiency (COL6), and 71 subjects with Duchenne muscular dystrophy (DMD) were studied. (1) H-MRS-based FF were corrected for the increased muscle (1) H2 O T1 and T2 values observed in dystrophic muscles. RESULTS: Excellent agreement was found between coregistered FFs derived from gradient echo images fit to a multipeak model with noise bias correction and the relaxation-corrected (1) H-MRS FFs (y = 0.93x + 0.003; R(2) = 0.96) across the full range of FFs. Relaxation-corrected (1) H-MRS FFs and imaging-based FFs were significantly elevated (P < 0.01) in the muscles of COL6 and DMD subjects. CONCLUSION: FFs, T2 , and T1 were all sensitive to muscle involvement in dystrophic muscle. MRI offered an additional advantage over single-voxel spectroscopy in that the tissue heterogeneity in FFs could be readily determined.


Subject(s)
Adipose Tissue/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Muscular Dystrophy, Duchenne/pathology , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Collagen Type IV/deficiency , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Male , Middle Aged , Phantoms, Imaging , Signal-To-Noise Ratio
19.
Front Hum Neurosci ; 7: 400, 2013.
Article in English | MEDLINE | ID: mdl-23898254

ABSTRACT

The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1 T using isotropic resolution of 0.333, 1, and 2 mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo.

20.
NMR Biomed ; 26(3): 320-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23044995

ABSTRACT

Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T2). Therefore, the examination of T2 changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T2, percentage of elevated pixels and T2 heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T2 changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T2 -weighted imaging of their lower leg using a 3-T MR system. T2 maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T2 of the traced regions of interest, width of the T2 histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T2, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T2 measures decreased with fat saturation, but were still higher (P < 0.05) in dystrophic muscles than in controls. Further, T2 measures showed positive correlations with timed functional tests (r = 0.23-0.79). The elevated T2 measures with and without fat saturation at all ages of DMD examined (5-15 years) compared with unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema and fat infiltration. This study shows that T2 mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T2 mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/diagnosis , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Humans , Leg/pathology , Male , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...