Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 41(3): 252-263, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11391463

ABSTRACT

The diversity of bacteria and archaea associating on the surface and interior of maize roots (Zea mays L.) was investigated. A bacterial 16S rDNA primer was designed to amplify bacterial sequences directly from maize roots by PCR to the exclusion of eukaryotic and chloroplast DNA. The mitochondrial sequence from maize was easily separated from the PCR-amplified bacterial sequences by size fractionation. The culturable component of the bacterial community was also assessed, reflecting a community composition different from that of the clone library. The phylogenetic overlap between organisms obtained by cultivation and those identified by direct PCR amplification of 16S rDNA was 48%. Only 4 bacterial divisions were found in the culture collection, which represented 27 phylotypes, whereas 6 divisions were identified in the clonal analysis, comprising 74 phylotypes, including a member of the OP10 candidate division originally described as a novel division level lineage in a Yellowstone hot spring. The predominant group in the culture collection was the actinobacteria and within the clone library, the a-proteobacteria predominated. The population of maize-associated proteobacteria resembled the proteobacterial population of a typical soil community within which resided a subset of specific plant-associated bacteria, such as Rhizobium- and Herbaspirillum-related phylotypes. The representation of phylotypes within other divisions (OP10 and Acidobacterium) suggests that maize roots support a distinct bacterial community. The diversity within the archaeal domain was low. Of the 50 clones screened, 6 unique sequence types were identified, and 5 of these were highly related to each other (sharing 98% sequence identity). The archaeal sequences clustered with good bootstrap support near Marine group I (crenarchaea) and with Marine group II (euryarchaea) uncultured archaea. The results suggest that maize supports a diverse root-associated microbial community composed of species that for the first time have been described as inhabitants of a plant-root environment.

2.
Microb Ecol ; 40(2): 125-138, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11029081

ABSTRACT

In a study of bacterioplankton in an oligotrophic lake in northern Wisconsin, a community fingerprinting technique, automated ribosomal intergenic spacer analysis (ARISA), was used to determine the effect of resources and trophic interactions on bacterioplankton diversity. Inorganic nitrogen and phosphorus (NP), carbon in the form of glucose (G) or dissolved organic matter extracted from peat (DOM), and carbon and NP in combination were added to two types of experimental systems. Ten-liter mesocosms contained all components of the original aquatic community except for large zooplankton. One-liter dilution cultures were prepared so that the effects of grazers and phytoplankton were removed. During a 3-day incubation, bacterial production showed the greatest response to the carbon plus NP treatment in both experimental systems, but bacterial diversity was strikingly different between them. In the mesocosms, the number of ARISA-PCR fragments averaged 41 per profile, whereas the dilution culture communities were highly reduced in complexity, dominated in most cases by a single PCR fragment. Further analysis of the mesocosm data suggested that whereas the NPDOM addition caused the greatest aggregate bacterial growth response, the addition of NP alone caused the largest shifts in community composition. These results suggest that the measurement of aggregate responses, such as bacterial production, alone in studies of freshwater bacterial communities may mask the effects of resources on bacterioplankton.

3.
Appl Environ Microbiol ; 64(12): 5020-2, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9835600

ABSTRACT

The effects of antibiotic production on rhizosphere microbial communities of field-grown Phaseolus vulgaris were assessed by using ribosomal intergenic spacer analysis. Inoculum strains of Rhizobium etli CE3 differing only in trifolitoxin production were used. Trifolitoxin production dramatically reduced the diversity of trifolitoxin-sensitive members of the alpha subdivision of the class Proteobacteria with little apparent effect on most microbes.

4.
Appl Environ Microbiol ; 64(7): 2630-3, 1998 Jul 01.
Article in English | MEDLINE | ID: mdl-9647840

ABSTRACT

A major barrier to the use of nitrogen-fixing inoculum strains for the enhancement of legume productivity is the inability of commercially available strains to compete with indigenous rhizobia for nodule formation. Despite extensive research on nodulation competitiveness, there are no examples of field efficacy studies of strains that have been genetically improved for nodulation competitiveness. We have shown previously that production of the peptide antibiotic trifolitoxin (TFX) by Rhizobium etli results in significantly increased nodule occupancy values in nonsterile soil in growth chamber experiments (E. A. Robleto, A. J. Scupham, and E. W. Triplett, Mol. Plant-Microbe Interact. 10:228-233, 1997). To determine whether TFX production by Rhizobium etli increases nodulation competitiveness in field-grown plants, seeds of Phaseolus vulgaris were inoculated with mixtures of Rhizobium etli strains at different ratios. The three nearly isogenic inoculum strains used included TFX-producing and non-TFX-producing strains, as well as a TFX-sensitive reference strain. Data was obtained over 2 years for nodule occupancy and over 3 years for assessment of the effect of the TFX production phenotype on grain yield. In comparable mixtures in which the test strain accounted for between 5 and 50% of the inoculum, the TFX-producing strain exhibited at least 20% greater nodule occupancy than the non-TFX-producing strain in both years. The TFX production phenotype had no effect on grain yield over 3 years; the average yields reached 2,400 kg/ha. These results show that addition of the TFX production phenotype significantly increases nodule occupancy under field conditions without adverse effects on grain yield. As we used common inoculation methods in this work, there are no practical barriers to the commercial adoption of the TFX system for agriculture.

SELECTION OF CITATIONS
SEARCH DETAIL
...