Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
JCI Insight ; 9(6)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329812

ABSTRACT

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammation-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague-Dawley rats, with or without reflux induction, received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/TP53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Streptococcus parasanguinis, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory, and immune-implicated proteins and genes, including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1b, Lbp, Lcn2, Myd88, Nfkb1, Tlr2, and Tlr4, aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe, promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation, and cellular damage.


Subject(s)
Adenocarcinoma , Bile Reflux , Esophageal Neoplasms , Gastroesophageal Reflux , Gastrointestinal Microbiome , Proanthocyanidins , Humans , Rats , Animals , Proanthocyanidins/pharmacology , Proanthocyanidins/therapeutic use , Proanthocyanidins/metabolism , Gastrointestinal Microbiome/physiology , Dysbiosis/drug therapy , Rats, Sprague-Dawley , Adenocarcinoma/genetics , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/genetics , Inflammation/drug therapy , Metabolome
2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38139823

ABSTRACT

We recently reported that cranberry proanthocyanidins (C-PACs) inhibit esophageal adenocarcinoma (EAC) by 83% through reversing reflux-induced bacterial, inflammatory and immune-implicated proteins and genes as well as reducing esophageal bile acids, which drive EAC progression. This study investigated whether C-PACs' mitigation of bile reflux-induced transporter dysregulation mechanistically contributes to EAC prevention. RNA was isolated from water-, C-PAC- and reflux-exposed rat esophagi with and without C-PAC treatment. Differential gene expression was determined by means of RNA sequencing and RT-PCR, followed by protein assessments. The literature, coupled with the publicly available Gene Expression Omnibus dataset GSE26886, was used to assess transporter expression levels in normal and EAC patient biopsies for translational relevance. Significant changes in ATP-binding cassette (ABC) transporters implicated in therapeutic resistance in humans (i.e., Abcb1, Abcb4, Abcc1, Abcc3, Abcc4, Abcc6 and Abcc10) and the transport of drugs, xenobiotics, lipids, and bile were altered in the reflux model with C-PACs' mitigating changes. Additionally, C-PACs restored reflux-induced changes in solute carrier (SLC), aquaporin, proton and cation transporters (i.e., Slc2a1, Slc7a11, Slc9a1, Slco2a1 and Atp6v0c). This research supports the suggestion that transporters merit investigation not only for their roles in metabolism and therapeutic resistance, but as targets for cancer prevention and targeting preventive agents in combination with chemotherapeutics.

3.
bioRxiv ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37662411

ABSTRACT

The gut and local esophageal microbiome progressively shift from healthy commensal bacteria to inflammatory-linked pathogenic bacteria in patients with gastroesophageal reflux disease, Barrett's esophagus and esophageal adenocarcinoma (EAC). However, mechanisms by which microbial communities and metabolites contribute to reflux-driven EAC remain incompletely understood and challenging to target. Herein, we utilized a rat reflux-induced EAC model to investigate targeting the gut microbiome-esophageal metabolome axis with cranberry proanthocyanidins (C-PAC) to inhibit EAC progression. Sprague Dawley rats, with or without reflux-induction received water or C-PAC ad libitum (700 µg/rat/day) for 25 or 40 weeks. C-PAC exerted prebiotic activity abrogating reflux-induced dysbiosis, and mitigating bile acid metabolism and transport, culminating in significant inhibition of EAC through TLR/NF-κB/P53 signaling cascades. At the species level, C-PAC mitigated reflux-induced pathogenic bacteria (Clostridium perfringens, Escherichia coli, and Proteus mirabilis). C-PAC specifically reversed reflux-induced bacterial, inflammatory and immune-implicated proteins and genes including Ccl4, Cd14, Crp, Cxcl1, Il6, Il1ß, Lbp, Lcn2, Myd88, Nfkb1, Tlr2 and Tlr4 aligning with changes in human EAC progression, as confirmed through public databases. C-PAC is a safe promising dietary constituent that may be utilized alone or potentially as an adjuvant to current therapies to prevent EAC progression through ameliorating reflux-induced dysbiosis, inflammation and cellular damage.

4.
Sci Rep ; 12(1): 8289, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585122

ABSTRACT

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and debilitating pain disorder of the bladder and urinary tract with poorly understood etiology. A definitive diagnosis of IC/BPS can be challenging because many symptoms are shared with other urological disorders. An analysis of urine presents an attractive and non-invasive resource for monitoring and diagnosing IC/BPS. The antiproliferative factor (APF) peptide has been previously identified in the urine of IC/BPS patients and is a proposed biomarker for the disorder. Nevertheless, other small urinary peptides have remained uninvestigated in IC/BPS primarily because protein biomarker discovery efforts employ protocols that remove small endogenous peptides. The purpose of this study is to investigate the profile of endogenous peptides in IC/BPS patient urine, with the goal of identifying putative peptide biomarkers. Here, a non-targeted peptidomics analysis of urine samples collected from IC/BPS patients were compared to urine samples from asymptomatic controls. Our results show a general increase in the abundance of urinary peptides in IC/BPS patients, which is consistent with an increase in inflammation and protease activity characteristic of this disorder. In total, 71 peptides generated from 39 different proteins were found to be significantly altered in IC/BPS. Five urinary peptides with high variable importance in projection (VIP) coefficients were found to reliably differentiate IC/BPS from healthy controls by receiver operating characteristic (ROC) analysis. In parallel, we also developed a targeted multiple reaction monitoring method to quantify the relative abundance of the APF peptide from patient urine samples. Although the APF peptide was found in moderately higher abundance in IC/BPS relative to control urine, our results show that the APF peptide was inconsistently present in urine, suggesting that its utility as a sole biomarker of IC/BPS may be limited. Overall, our results revealed new insights into the profile of urinary peptides in IC/BPS that will aid in future biomarker discovery and validation efforts.


Subject(s)
Cystitis, Interstitial , Biomarkers/urine , Cystitis, Interstitial/diagnosis , Humans , Inflammation , Peptides , Urinary Bladder
5.
J Gerontol A Biol Sci Med Sci ; 77(3): 484-493, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35239952

ABSTRACT

BACKGROUND: Delirium (an acute change in cognition) is a common, morbid, and costly syndrome seen primarily in aging adults. Despite increasing knowledge of its epidemiology, delirium remains a clinical diagnosis with no established biomarkers to guide diagnosis or management. Advances in proteomics now provide opportunities to identify novel markers of risk and disease progression for postoperative delirium and its associated long-term consequences (eg, long-term cognitive decline and Alzheimer's disease [AD]). METHODS: In a nested matched case-control study (18 delirium/no-delirium pairs) within the Successful Aging after Elective Surgery study (N = 556), we evaluated the association of 1305 plasma proteins preoperatively [PREOP] and on postoperative day 2 [POD2]) with delirium using SOMAscan. Generalized linear models were applied to enzyme-linked immunosorbant assay (ELISA) validation data of one protein across the full cohort. Multi-protein modeling included delirium biomarkers identified in prior work (C-reactive protein, interleukin-6 [IL6]). RESULTS: We identified chitinase-3-like-protein-1 (CHI3L1/YKL-40) as the sole delirium-associated protein in both a PREOP and a POD2 predictor model, a finding confirmed by ELISA. Multi-protein modeling found high PREOP CHI3L1/YKL-40 and POD2 IL6 increased the risk of delirium (relative risk [95% confidence interval] Quartile [Q]4 vs Q1: 2.4[1.2-5.0] and 2.1[1.1-4.1], respectively). CONCLUSIONS: Our identification of CHI3L1/YKL-40 in postoperative delirium parallels reports of CHI3L1/YKL-40 and its association with aging, mortality, and age-related conditions including AD onset and progression. This highlights the type 2 innate immune response, involving CHI3L1/YKL-40, as an underlying mechanism of postoperative delirium, a common, morbid, and costly syndrome that threatens the independence of older adults.


Subject(s)
Chitinase-3-Like Protein 1 , Delirium , Postoperative Cognitive Complications , Aged , Biomarkers , Case-Control Studies , Chitinase-3-Like Protein 1/genetics , Delirium/diagnosis , Delirium/etiology , Elective Surgical Procedures , Humans , Interleukin-6 , Postoperative Cognitive Complications/diagnosis , Postoperative Cognitive Complications/genetics , Proteome
6.
Biology (Basel) ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36671721

ABSTRACT

Using a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides. Similarly, the lipidomics results revealed that ethanol decreased diacylglycerol, and increased triacylglycerol, sterol, and cholesterol biosynthesis. An integrated metabolomics and lipidomics pathway analysis showed that the accumulation of hepatic lipids occurred by ethanol modulation of the upstream lipid regulatory pathways, specifically glycolysis and glucuronides pathways. A proteomics analysis of lipid droplets isolated from control EtOH-fed rats and a subsequent functional enrichment analysis revealed that the proteomics data corroborated the metabolomic and lipidomic findings that chronic ethanol administration altered the glucuronidation pathway.

7.
Sci Rep ; 11(1): 1521, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452279

ABSTRACT

Postoperative delirium is the most common complication among older adults undergoing major surgery. The pathophysiology of delirium is poorly understood, and no blood-based, predictive markers are available. We characterized the plasma metabolome of 52 delirium cases and 52 matched controls from the Successful Aging after Elective Surgery (SAGES) cohort (N = 560) of patients ≥ 70 years old without dementia undergoing scheduled major non-cardiac surgery. We applied targeted mass spectrometry with internal standards and pooled controls using a nested matched case-control study preoperatively (PREOP) and on postoperative day 2 (POD2) to identify potential delirium risk and disease markers. Univariate analyses identified 37 PREOP and 53 POD2 metabolites associated with delirium and multivariate analyses achieved significant separation between the two groups with an 11-metabolite prediction model at PREOP (AUC = 83.80%). Systems biology analysis using the metabolites with differential concentrations rendered "valine, leucine, and isoleucine biosynthesis" at PREOP and "citrate cycle" at POD2 as the most significantly enriched pathways (false discovery rate < 0.05). Perturbations in energy metabolism and amino acid synthesis pathways may be associated with postoperative delirium and suggest potential mechanisms for delirium pathogenesis. Our results could lead to the development of a metabolomic delirium predictor.


Subject(s)
Postoperative Cognitive Complications/etiology , Postoperative Cognitive Complications/metabolism , Aged , Aged, 80 and over , Aging , Biomarkers/blood , Case-Control Studies , Cohort Studies , Computational Biology/methods , Delirium/etiology , Emergence Delirium/metabolism , Female , Humans , Male , Mass Spectrometry , Metabolomics/methods , Postoperative Complications/metabolism , Prognosis
8.
Ann Surg ; 273(4): 732-742, 2021 04 01.
Article in English | MEDLINE | ID: mdl-30946084

ABSTRACT

OBJECTIVES: To characterize the proteomic signature of surgery in older adults and association with postoperative outcomes. SUMMARY OF BACKGROUND DATA: Circulating plasma proteins can reflect the physiological response to and clinical outcomes after surgery. METHODS: Blood plasma from older adults undergoing elective surgery was analyzed for 1305 proteins using SOMAscan. Surgery-associated proteins underwent Ingenuity Pathways Analysis. Selected surgery-associated proteins were independently validated using Luminex or enzyme-linked immunosorbent assay methods. Generalized linear models estimated correlations with postoperative outcomes. RESULTS: Plasma from a subcohort (n = 36) of the Successful Aging after Elective Surgery (SAGES) study was used for SOMAscan. Systems biology analysis of 110 proteins with Benjamini-Hochberg (BH) corrected P value ≤0.01 and an absolute foldchange (|FC|) ≥1.5 between postoperative day 2 (POD2) and preoperative (PREOP) identified functional pathways with major effects on pro-inflammatory proteins. Chitinase-3-like protein 1 (CHI3L1), C-reactive protein (CRP), and interleukin-6 (IL-6) were independently validated in separate validation cohorts from SAGES (n = 150 for CRP, IL-6; n = 126 for CHI3L1). Foldchange CHI3L1 and IL-6 were associated with increased postoperative complications [relative risk (RR) 1.50, 95% confidence interval (95% CI) 1.21-1.85 and RR 1.63, 95% CI 1.18-2.26, respectively], length of stay (RR 1.35, 95% CI 0.77-1.92 and RR 0.98, 95% CI 0.52-1.45), and risk of discharge to postacute facility (RR 1.15, 95% CI 1.04-1.26 and RR 1.11, 95% CI 1.04-1.18); POD2 and PREOP CRP difference was associated with discharge to postacute facility (RR 1.14, 95% CI 1.04-1.25). CONCLUSION: SOMAscan can identify novel and clinically relevant surgery-induced protein changes. Ultimately, proteomics may provide insights about pathways by which surgical stress contributes to postoperative outcomes.


Subject(s)
Elective Surgical Procedures , Postoperative Complications/blood , Proteome/metabolism , Proteomics/methods , Aged , Biomarkers/blood , C-Reactive Protein/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Length of Stay , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...