Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 7(12): 10788-98, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24187970

ABSTRACT

We report the preparation of hybrid paperlike films consisting of alternating layers of graphene (or graphene oxide) and different types of multiwalled carbon nanotubes (N-doped MWNTs, B-doped MWNTs, and pristine MWNTs). We used an efficient self-assembly method in which nanotubes were functionalized with cationic polyelectrolytes in order to make them dispersible in water, and subsequently these suspensions were mixed with graphene oxide (GO) suspensions, and the films were formed by casting/evaporation processes. The electronic properties of these films (as produced and thermally reduced) were characterized, and we found electrical resistivities as low as 3 × 10(-4) Ω cm. Furthermore, we observed that these films could be used as electron field emission sources with extraordinary efficiencies; threshold electric field of ca. 0.55 V/µm, ß factor as high as of 15.19 × 10(3), and operating currents up to 220 µA. These values are significantly enhanced when compared to previous reports in the literature for other carbon nanostructured filmlike materials. We believe these hybrid foils could find other applications as scaffolds for tissue regeneration, thermal and conducting papers, and laminate composites with epoxy resins.

2.
ACS Nano ; 7(3): 2192-204, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23421313

ABSTRACT

In this work, we carried out chemical oxidation studies of nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNTs) using potassium permanganate in order to obtain nitrogen-doped graphene nanoribbons. Reaction parameters such as oxidation reaction, reaction time, the oxidizer to nanotube mass ratio, and the temperature were varied, and their effect was carefully analyzed. The presence of nitrogen atoms makes CNx-MWCNTs more reactive toward oxidation when compared to undoped multiwalled carbon nanotubes (MWCNTs). High-resolution transmission electron microscopy studies indicate that the oxidation of the graphitic layers within CNx-MWCNTs results in the unzipping of large diameter nanotubes and the formation of a disordered oxidized carbon coating on small diameter nanotubes. The nitrogen content within unzipped CNx-MWCNTs decreased as a function of the oxidation time, temperature, and oxidizer concentration. By controlling the degree of oxidation, the N atomic % could be reduced from 1.56% in pristine CNx-MWCNTs down to 0.31 atom % in nitrogen-doped oxidized graphene nanoribbons. A comparative thermogravimetric analysis reveals a lower thermal stability of the (unzipped) oxidized CNx-MWCNTs when compared to MWCNT samples. The oxidized graphene nanoribbons were chemically and thermally reduced and yielded nitrogen-doped graphene nanoribbons (N-GNRs). The thermal reduction at relatively low temperature (300 °C) results in graphene nanoribbons with 0.37 atom % of nitrogen. This method represents a novel route to preparation of bulk quantities of nitrogen-doped unzipped carbon nanotubes, which is able to control the doping level in the resulting reduced GNR samples. Finally, the electrochemical properties of these materials were evaluated.

3.
ACS Nano ; 6(3): 2261-72, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22360783

ABSTRACT

We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N(2) gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN(x)-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N(2) molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS(2), WS(2), etc.

4.
Nanoscale ; 3(10): 4359-64, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21909584

ABSTRACT

The thermal stability of nitrogen (N) functionalities on the sidewalls of N-doped multi-walled carbon nanotubes was investigated at temperatures ranging between 1000 °C and 2000 °C. The structural stability of the doped tubes was then correlated with the electrical conductivity both at the bulk and at the individual tube levels. When as-grown tubes were thermally treated at 1000 °C, we observed a very significant decrease in the electrical resistance of the individual nanotubes, from 54 kΩ to 0.5 kΩ, which is attributed to a low N doping level (e.g. 0.78 at% N). We noted that pyridine-type N was first decomposed whereas the substitutional N was stable up to 1500 °C. For nanotubes heat treated to 1800 °C and 2000 °C, the tubes exhibited an improved degree of crystallinity which was confirmed by both the low R value (I(D)/I(G)) in the Raman spectra and the presence of straight graphitic planes observed in TEM images. However, N atoms were not detected in these tubes and caused an increase in their electrical resistivity and resistance. These partially annealed doped tubes with enhanced electrical conductivities could be used in the fabrication of robust and electrically conducting composites, and these results could be extrapolated to N-doped graphene and other nanocarbons.


Subject(s)
Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Electric Conductivity , Nanotubes, Carbon/ultrastructure , Spectrum Analysis, Raman , Temperature
5.
Nano Lett ; 9(4): 1527-33, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19260705

ABSTRACT

We found that multiwalled carbon nanotubes (MWNTs) can be opened longitudinally by intercalation of lithium and ammonia followed by exfoliation. Intercalation of open-ended tubes and exfoliation with acid treatment and abrupt heating provided the best results. The resulting material consists of: (i) multilayered flat graphitic structures (nanoribbons), (ii) partially open MWNTs, and (iii) graphene flakes. We called the completely unwrapped nanotubes ex-MWNTs, and their large number of edge atoms makes them attractive for many applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...