Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 20(8): 5929-5935, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32639741

ABSTRACT

The experimental identification of structural transitions in layered black phosphorus (BP) under mechanical stress is essential to extend its application in microelectromechanical (MEMS) devices under harsh conditions. High-pressure Raman spectroscopic analysis of BP flakes suggests a transition pressure at ∼4.2 GPa, where the BP's crystal structure progressively transforms from an orthorhombic to a rhombohedral symmetry (blue phosphorus, bP). The phase transition has been identified by observing a transition from blueshift to redshift of the in-plane characteristic Raman modes (B2g and Ag2) with increasing pressure. Recovery of the vibrational frequencies for all three characteristic Raman modes confirms the reversibility of the structural phase transition. First-principles calculations provide insight into the behavior of the Raman modes of BP under high pressure and reveal the mechanism responsible for the partial phase transition from BP to bP, corresponding to a metastable equilibrium state where both phases coexist.

2.
ACS Nano ; 13(9): 10456-10468, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31436958

ABSTRACT

We report a temperature-dependent Raman spectroscopy study of few-layer black phosphorus (BP) with varied incident polarization and sample thickness. The Raman-active modes Ag1, B2g, and Ag2 exhibit a frequency downshift, while their line width tends to increase with increasing temperature. To understand the details of these phenomena, we perform first-principles density functional theory calculations on freestanding monolayer BP. The effect of thermal expansion is included by constraining the temperature-dependent lattice constant. The study of the temperature-induced shift of the phonon frequencies is carried out using ab initio molecular dynamics simulations. The normal-mode frequencies are calculated by identifying the peak positions from the magnitude of the Fourier transform of the total velocity autocorrelation. Anharmonicity induces a frequency shift for each individual mode, and the three- and four-phonon process coefficients are extracted. These results are compared with those obtained from many-body perturbation theory, giving access to phonon lifetimes and lattice thermal conductivity. We establish that the frequency downshift is primarily due to phonon-phonon scattering while thermal expansion only contributes indirectly by renormalizing the phonon-phonon scattering. Overall, the theoretical results are in excellent agreement with experiment, thus showing that controlling phonon scattering in BP could result in better thermoelectric devices or transistors that dissipate heat more effectively when confined to the nanoscale.

3.
Nanoscale ; 11(16): 7682-7689, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30946426

ABSTRACT

Ullmann coupling or, more generally, dehalogenative aryl-aryl coupling, is one of the most widely exploited chemical reactions to obtain one- and two-dimensional polymers on metal surfaces. It is generally described as a two-step reaction: (i) dehalogenation, resulting in the formation of a stable intermediate organometallic phase and subsequent (ii) C-C coupling. The topology of the resulting polymer depends on the number and positions of the halogen atoms in the haloaromatic precursor, although its orientation and order are determined by the structure of the intermediate phase. Hitherto, only one intermediate structure, identified as an organometallic (OM) phase, has been reported for such a reaction. Here we demonstrate the formation of two distinct OM phases during the temperature-induced growth of poly(para-phenylene) from 1,4-dibromobenzene precursors on Cu(110). Beyond the already known linear-OM chains, we show that a phase reorganization to a chessboard-like 2D-OM can be activated in a well-defined temperature range. This new intermediate phase, revealed only when the reaction is carried out at low molecular coverages, was characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy and near-edge X-ray absorption fine structure spectroscopy, and modeled by density functional theory calculations. Our data show that the 2D-OM remains stable after cooling down the sample and is stabilized by four-Cu clusters at each node. The observation of such unexpected intermediate phase shows the complexity of the mechanisms underlying on-surface synthesis and broadens the understanding of Ullmann coupling, which continues to be astonishing despite its extensive use.

4.
Phys Chem Chem Phys ; 21(1): 322-328, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30520896

ABSTRACT

We propose an extension of the traditional valence force field model to allow for the effect of electronic polarization to be included in the inter-atomic potential. Using density functional theory as a reference, this model is parameterized for the specific case of single-layer black phosphorus by fitting the phonon dispersion relation over the entire Brillouin zone. The model is designed to account for the effect of induced dipole interaction on the long-wavelength (|q[combining right harpoon above]| → 0) modes for the case of homopolar covalent crystals. We demonstrate that the near Γ-point frequencies of the IR-active modes are substantially damped by the inclusion of the induced dipole interaction, in agreement with experiment. The fitting procedure outlined here allows for this model to be adapted to other materials, including but not limited to two-dimensional crystals.

5.
ACS Nano ; 11(7): 7494-7507, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28666086

ABSTRACT

A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.


Subject(s)
Nanopores/ultrastructure , Nanostructures/chemistry , Phosphorus/chemistry , Semiconductors , Anisotropy , Electrons , Equipment Design , Models, Molecular , Nanostructures/ultrastructure , Quantum Theory
6.
Nanoscale ; 8(47): 19668-19676, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27858049

ABSTRACT

Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 108 A m-2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.

7.
Phys Chem Chem Phys ; 17(44): 30045-51, 2015 Nov 28.
Article in English | MEDLINE | ID: mdl-26497888

ABSTRACT

The presence of polyiodide complexes have been reported several times when carbon-based materials were doped by iodine molecules, but their formation mechanism remains unclear. By using first-principles calculations that include nonlocal correlation effects by means of a van der Waals density functional approach, we propose that the formation of triiodide (I3(-)) and pentaiodide (I5(-)) is due to a large density of iodine molecules (I2) in interaction with a carbonaceous substrate. As soon as the concentration of surface iodine reaches a threshold value of 12.5% for a graphene monolayer and 6.25% for a bilayer, these complexes spontaneously appear. The corresponding structural and energetic aspects, electronic structures and vibrational frequencies support this statement. An upshift of the Dirac point from the Fermi level with values of 0.45 and 0.52 eV is observed for adsorbed complexes on graphene and intercalated complexes between two layers, respectively. For doped-graphene, it corresponds to a graphene hole density of around 1.1 × 10(13) cm(-2), in quantitative agreement with experiments. Additionally, we have studied the thermal stability at room temperature of these adsorbed ions on graphene by means of ab initio molecular dynamics, which also shows successful p-doping with polyiodide complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...