Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
mSphere ; 9(3): e0000624, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38380941

ABSTRACT

Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE: The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.


Subject(s)
Haemophilus Infections , Haemophilus influenzae , Haemophilus , Humans , Heme/metabolism , Lung/microbiology , Iron
2.
Environ Res ; 236(Pt 2): 116868, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567381

ABSTRACT

Exposure to geogenic (earth-derived) particulate matter (PM) is linked to an increased prevalence of bronchiectasis and other respiratory infections in Australian Indigenous communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of geogenic PM and iron oxide on the invasiveness of non-typeable Haemophilus influenzae (NTHi). Peripheral blood mononuclear cell-derived macrophages or epithelial cell lines (A549 & BEAS-2B) were exposed to whole geogenic PM, their primary constituents (haematite, magnetite or silica) or diesel exhaust particles (DEP). The uptake of bacteria was quantified by flow cytometry and whole genome sequencing (WGS) was performed on NTHi strains. Geogenic PM increased the invasiveness of NTHi in bronchial epithelial cells. Of the primary constituents, haematite also increased NTHi invasion with magnetite and silica having significantly less impact. Furthermore, we observed varying levels of invasiveness amongst NTHi isolates. WGS analysis suggested isolates with more genes associated with heme acquisition were more virulent in BEAS-2B cells. The present study suggests that geogenic particles can increase the susceptibility of bronchial epithelial cells to select bacterial pathogens in vitro, a response primarily driven by haematite content in the dust. This demonstrates a potential mechanism linking exposure to iron-laden geogenic PM and high rates of chronic respiratory infections in remote communities in arid environments.

3.
Arch Microbiol ; 205(1): 27, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520253

ABSTRACT

Haemophilus influenzae is a causative agent of serious infections, especially among children. ß-lactam antibiotics are commonly used for the treatment of these infections. Among H. influenzae isolates, ß-lactam resistance is due to the presence of ß-lactamase, or to mutations in the ftsI gene that generate altered PBP3 (penicillin-binding protein 3) with reduced affinity for ß-lactams (BLNAR-ß-lactamase-negative, ampicillin-resistant). Wild-type ftsI gene encoding for PBP3 was amplified in whole from ß-lactam susceptible H. influenzae Rd and cloned in pLS88 plasmid to obtain pADUTAS17, which was then used to transform known BLNAR strains, susceptible strains, and a strain (CF55) with wild-type ftsI but unexplained reduced ß-lactam susceptibility. Ampicillin and cefotaxime MICs (minimum inhibitory concentration) were determined after transformation with pLS88 and pADUTAS17 plasmids. The results showed that antibiotic susceptibilities were not affected by trans-complementation for isolates carrying wild-type ftsI gene. However, trans-complementation for all BLNAR strains showed decreases between - 0.957 and 0.5-fold for ampicillin and cefotaxime, confirming the role of the PBP3 substitutions in the BLNAR phenotype of these isolates. The first article showed that trans-complementation might be a useful tool in the investigation of decreased ß-lactam susceptibility in H. influenzae.


Subject(s)
Ampicillin Resistance , Haemophilus Infections , Haemophilus influenzae , Humans , Ampicillin/pharmacology , Ampicillin Resistance/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , beta-Lactams/pharmacology , Cefotaxime/pharmacology , Haemophilus Infections/genetics , Haemophilus influenzae/genetics , Microbial Sensitivity Tests , Mutation
4.
Pathogens ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068621

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a major respiratory pathogen that initiates infection by colonising the upper airways. Strategies that interfere with this interaction may therefore have a clinically significant impact on the ability of NTHi to cause disease. We have previously shown that strains of the commensal bacterium Haemophilus haemolyticus (Hh) that produce a novel haem-binding protein, haemophilin, can prevent NTHi growth and interactions with host cells in vitro. We hypothesized that natural pharyngeal carriage of Hh strains with the hpl open reading frame (Hh-hpl+) would be associated with a lower prevalence and/or density of NTHi colonisation in healthy individuals. Oropharyngeal swabs were collected from 257 healthy adults in Australia between 2018 and 2019. Real-time PCR was used to quantitatively compare the oropharyngeal carriage load of NTHi and Hh populations with the Hh-hpl+ or Hh-hpl- genotype. The likelihood of acquiring/maintaining NTHi colonisation status over a two- to six-month period was assessed in individuals that carried either Hh-hpl- (n = 25) or Hh-hpl+ (n = 25). Compared to carriage of Hh-hpl- strains, adult (18-65 years) and elderly (>65 years) participants that were colonised with Hh-hpl+ were 2.43 or 2.67 times less likely to carry NTHi in their oropharynx, respectively. Colonisation with high densities of Hh-hpl+ correlated with a low NTHi carriage load and a 2.63 times lower likelihood of acquiring/maintaining NTHi colonisation status between visits. Together with supporting in vitro studies, these results encourage further investigation into the potential use of Hh-hpl+ as a respiratory probiotic candidate for the prevention of NTHi infection.

5.
Pathogens ; 10(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401487

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a significant respiratory tract pathogen responsible for infections that collectively pose a substantial health and socioeconomic burden. The clinical course of these infections is largely dictated by NTHi interactions with host respiratory epithelia, and thus, approaches that disrupt colonisation and invasion may have significant therapeutic potential. Survival, successful host-cell interactions, and pathogenesis are reliant on NTHi's ability to sequester host-derived haem. Previously, we demonstrated the therapeutic potential of exploiting this haem-dependence using a closely related competitor bacterium, Haemophilus haemolyticus (Hh). Hh strains capable of producing the novel haem-binding protein haemophilin (Hpl) possessed potent inhibitory activity by restricting NTHi access to haem in a broth co-culture environment. Here, we extend this work to cell culture models that more closely represent the human respiratory epithelium and show that Hh strains with high levels of hpl expression protect epithelial cell line monolayers against adhesion and invasion by NTHi. Inhibitory activity was dependent on the level of Hpl production, which was stimulated by NTHi challenge and nasopharyngeal cell exposure. Provided these protective benefits translate to in vivo applications, Hpl-producing Hh may have probiotic utility against NTHi infections by inhibiting requisite nasopharyngeal colonisation.

6.
Article in English | MEDLINE | ID: mdl-33379200

ABSTRACT

Exposure to geogenic (earth-derived) particulate matter (PM) is linked to severe bacterial infections in Australian Aboriginal communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of silica and iron oxide on the inflammatory response and bacterial phagocytosis in macrophages. THP-1 and peripheral blood mononuclear cell-derived macrophages were exposed to iron oxide (haematite or magnetite) or silica PM with or without exposure to lipopolysaccharide. Cytotoxicity and inflammation were assessed by LDH assay and ELISA respectively. The uptake of non-typeable Haemophilus influenzae by macrophages was quantified by flow cytometry. Iron oxide increased IL-8 production while silica also induced significant production of IL-1ß. Both iron oxide and silica enhanced LPS-induced production of TNF-α, IL-1ß, IL-6 and IL-8 in THP-1 cells with most of these responses replicated in PBMCs. While silica had no effect on NTHi phagocytosis, iron oxide significantly impaired this response. These data suggest that geogenic particles, particularly iron oxide PM, cause inflammatory cytokine production in macrophages and impair bacterial phagocytosis. These responses do not appear to be linked. This provides a possible mechanism for the link between exposure to these particles and severe bacterial infection.


Subject(s)
Ferric Compounds/pharmacology , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides , Macrophages/drug effects , Phagocytosis , Australia , Cytokines/metabolism , Haemophilus influenzae , Humans , Lipopolysaccharides/toxicity , Silicon Dioxide/pharmacology , THP-1 Cells
7.
Microorganisms ; 8(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182355

ABSTRACT

Probiotics have been widely used in maintaining gastrointestinal health, despite their actual mechanism remaining obscure. There are several hypotheses behind the beneficial effects of probiotics including the regulation of intestinal barrier function and improvement in immune responses in the gastrointestinal system. Multiple probiotics have been introduced in the market as effective dietary supplements in improving gastrointestinal integrity, but there are no or few studies that demonstrate their underlying mechanism. In the current study, we investigated and compared the efficacy of four probiotics (based on different bacterial species) in refining gastrointestinal health by improving mucus biosynthesis and intestinal immune response under in-vitro conditions. By analyzing the gene expression of mucus biosynthesis and intestinal immune response markers, we found that probiotic Streptococcus thermophilus UASt-09 showed promising potential in refining mucosal barrier and gastrointestinal health in human colonic epithelial cells, as compared to other commercial probiotics.

8.
Pathogens ; 9(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218184

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a leading causative organism of opportunistic respiratory tract infections. However, there are currently no effective vaccination strategies, and existing treatments are compromised by antibiotic resistance. We previously characterized Haemophilus haemolyticus (Hh) strains capable of producing haemophilin (HPL), a heme-binding protein that restricts NTHi growth by limiting its access to an essential growth factor, heme. Thus, these strains may have utility as a probiotic therapy against NTHi infection by limiting colonization, migration and subsequent infection in susceptible individuals. Here, we assess the preliminary feasibility of this approach by direct in vitro competition assays between NTHi and Hh strains with varying capacity to produce HPL. Subsequent changes in NTHi growth rate and fitness, in conjunction with HPL expression analysis, were employed to assess the NTHi-inhibitory capacity of Hh strains. HPL-producing strains of Hh not only outcompeted NTHi during short-term and extended co-culture, but also demonstrated a growth advantage compared with Hh strains unable to produce the protein. Additionally, HPL expression levels during competition correlated with the NTHi-inhibitory phenotype. HPL-producing strains of Hh demonstrate significant probiotic potential against NTHi colonization in the upper respiratory tract, however, further investigations are warranted to demonstrate a range of other characteristics that would support the eventual development of a probiotic.

9.
Microb Drug Resist ; 26(7): 747-751, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31971866

ABSTRACT

Objectives: The most common macrolide resistance mechanisms in streptococci are the presence of methylase encoding genes ermB and ermTR or the presence of efflux encoded by mef genes. In the present study we aimed to show the effects of the ermTR gene under isogenic conditions on the activities of macrolides and lincosamides in streptococci. Materials and Methods: Total DNA was extracted from Streptococcus pyogenes C1, and the ermTR gene was amplified with or without the regulatory region using modified primer with insertion of restriction sites to clone in to pUC18. Transformants were selected after electroporation of Escherichia coli DB10. The recombinant plasmids were purified and merged to pJIM2246 to transform Gram positive bacteria. Recombinant pJIM2246 plasmids with the ermTR gene were then introduced into S. pyogenes NZ131 by electroporation. Results: After transformation with ermTR without regulatory region the minimal inhibitory concentration (MIC) for erythromycin and clindamycin increased from ≤0.06 to ≤0.06 to 8 and >128 mg/L, respectively. Induction with erythromycin affected the MICs for clindamycin of S. pyogenes transformed with ermTR with the regulatory region. Double disk testing showed that induction with erythromycin and azithromycin for the S. pyogenes transformed with ermTR, and regulatory regions decreased the clindamycin inhibition zone but not telithromycin. The ermTR gene in isogenic conditions confers low level resistance to erythromycin and high level resistance to clindamycin. Conclusion: The different induction and resistance profiles of ermTR compared to other erm genes suggest that the methylation of ErmTR may be different than well studied methylases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Clindamycin/pharmacology , Erythromycin/pharmacology , Methyltransferases/genetics , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/genetics , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests
10.
Mol Microbiol ; 113(2): 381-398, 2020 02.
Article in English | MEDLINE | ID: mdl-31742788

ABSTRACT

Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.


Subject(s)
Haemophilus influenzae/drug effects , Haemophilus/metabolism , Heme-Binding Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Haemophilus Infections/microbiology , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Heme/metabolism , Heme-Binding Proteins/chemistry , Heme-Binding Proteins/isolation & purification , Heme-Binding Proteins/pharmacology , Humans
11.
Clin Sci (Lond) ; 133(14): 1663-1703, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31346069

ABSTRACT

Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.


Subject(s)
Cell Adhesion Molecules/immunology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Animals , Anti-Bacterial Agents/administration & dosage , Antiviral Agents , Bacterial Infections/drug therapy , Bacterial Infections/etiology , Cell Adhesion Molecules/genetics , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/genetics , Virus Diseases/drug therapy , Virus Diseases/etiology
12.
Nutrients ; 11(6)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181695

ABSTRACT

Distribution of the microbiota varies according to the location in the gastrointestinal (GI) tract. Thus, dysbiosis during aging may not be limited to faecal microbiota and extend to the other parts of the GI tract, especially the cecum and colon. Lactobacillus acidophilus DDS-1, a probiotic strain, has been shown to modulate faecal microbiota and its associated metabolic phenotype in aging mice. In the present study, we investigated the effect of L. acidophilus DDS-1 supplementation on caecal- and mucosal-associated microbiota, short-chain fatty acids (SCFAs) and immunological profiles in young and aging C57BL/6J mice. Besides differences in the young and aging control groups, we observed microbial shifts in caecal and mucosal samples, leading to an alteration in SCFA levels and immune response. DDS-1 treatment increased the abundances of beneficial bacteria such as Akkermansia spp. and Lactobacillus spp. more effectively in caecal samples than in mucosal samples. DDS-1 also enhanced the levels of butyrate, while downregulating the production of inflammatory cytokines (IL-6, IL-1ß, IL-1α, MCP-1, MIP-1α, MIP-1ß, IL-12 and IFN-γ) in serum and colonic explants. Our findings suggest distinct patterns of intestinal microbiota, improvements in SCFA and immunological profiles with DDS-1 supplementation in aging mice.


Subject(s)
Aging , Butyric Acid/metabolism , Dysbiosis/prevention & control , Gastrointestinal Microbiome , Inflammation/prevention & control , Lactobacillus acidophilus/growth & development , Probiotics/therapeutic use , Aging/immunology , Aging/metabolism , Animals , Bacteria/growth & development , Cecum/microbiology , Colon/metabolism , Colon/microbiology , Cytokines/blood , Cytokines/metabolism , Down-Regulation , Dysbiosis/microbiology , Fatty Acids, Volatile/metabolism , Feces/microbiology , Inflammation/microbiology , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Models, Animal
13.
Int J Med Sci ; 15(9): 840-848, 2018.
Article in English | MEDLINE | ID: mdl-30008595

ABSTRACT

Background: The health benefits of probiotics are well established and known to be strain-specific. However, the role of probiotics obtained from different origins and their efficacy largely remains unexplored. The aim of this study is to investigate the in vitro efficacy of probiotics from different origins. Methods: Probiotic strains utilized in this study include Lactobacillus acidophilus DDS-1 (human origin), Bifidobacterium animalis ssp. lactis UABla-12 (human origin), L. plantarum UALp-05 (plant origin) and Streptococcus thermophilus UASt-09 (dairy origin). Screening assays such as in vitro digestion simulation, adhesion, cell viability and cytokine release were used to evaluate the probiotic potential. Results: All strains showed good resistance in the digestion simulation process, especially DDS-1 and UALp-05, which survived up to a range of 107 to 108 CFU/mL from an initial concentration of 109 CFU/mL. Two human colonic mucus-secreting cells, HT-29 and LS174T, were used to assess the adhesion capacity, cytotoxicity/viability, and cytokine quantification. All strains exhibited good adhesion capacity. No significant cellular cytotoxicity or loss in cell viability was observed. DDS-1 and UALp-05 significantly upregulated anti-inflammatory IL-10 and downregulated pro-inflammatory TNF-α cytokine production. All the strains were able to downregulate IL-8 cytokine levels. Conclusion: Of the 4 strains tested, DDS-1 demonstrated superior survival rates, good adhesion capacity and strong immunomodulatory effect under different experimental conditions.


Subject(s)
Colon/metabolism , Lactobacillus acidophilus , Probiotics , Cell Line , Colon/cytology , Cytokines/metabolism , Humans
14.
Biomed Res Int ; 2018: 4178607, 2018.
Article in English | MEDLINE | ID: mdl-29682542

ABSTRACT

Gut microbiota is established during birth and evolves with age, mostly maintaining the commensal relationship with the host. A growing body of clinical evidence suggests an intricate relationship between the gut microbiota and the immune system. With ageing, the gut microbiota develops significant imbalances in the major phyla such as the anaerobic Firmicutes and Bacteroidetes as well as a diverse range of facultative organisms, resulting in impaired immune responses. Antimicrobial therapy is commonly used for the treatment of infections; however, this may also result in the loss of normal gut flora. Advanced age, antibiotic use, underlying diseases, infections, hormonal differences, circadian rhythm, and malnutrition, either alone or in combination, contribute to the problem. This nonbeneficial gastrointestinal modulation may be reversed by judicious and controlled use of antibiotics and the appropriate use of prebiotics and probiotics. In certain persistent, recurrent settings, the option of faecal microbiota transplantation can be explored. The aim of the current review is to focus on the establishment and alteration of gut microbiota, with ageing. The review also discusses the potential role of gut microbiota in regulating the immune system, together with its function in healthy and diseased state.


Subject(s)
Aging/immunology , Aging/physiology , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Life Cycle Stages/immunology , Life Cycle Stages/physiology , Aging/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immune System/immunology , Life Cycle Stages/drug effects , Prebiotics , Probiotics/pharmacology , Probiotics/therapeutic use
15.
J Antimicrob Chemother ; 72(12): 3298-3301, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28961896

ABSTRACT

OBJECTIVES: To investigate the phenotypic effect of expression of selected acquired macrolide resistance genes (AMRGs) in non-typeable Haemophilus influenzae (NTHi). METHODS: The AMRGs erm(A), erm(B) and erm(C) were cloned into Escherichia coli JM109 using the shuttle vector pLS88; constructed plasmids extracted from suitable clones were used to transform H. influenzae Rd by electroporation. Erythromycin and azithromycin MICs for suitable transformants were determined by broth microdilution. AMRG expression was determined using quantitative PCR on transformant cDNA with locked nucleic acid dual-labelled hydrolysis probes. RESULTS: Expression of all AMRGs was observed in the transformants. Some variation in expression between the AMRGs was apparent, but expression of all genes was associated with a notable increase in erythromycin and azithromycin MICs compared with untransformed H. influenzae Rd. CONCLUSIONS: While the establishment of erm genes within WT populations of NTHi remains contentious, H. influenzae is capable of expression of erm. Expression may be associated with a subsequent decreased susceptibility to macrolides in isolates and future monitoring of these genes in NTHi isolates is warranted.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Gene Expression , Genes, Bacterial , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Macrolides/pharmacology , Azithromycin/pharmacology , Cloning, Molecular , Electroporation , Erythromycin/pharmacology , Escherichia coli/genetics , Genetic Vectors , Methyltransferases/biosynthesis , Methyltransferases/genetics , Microbial Sensitivity Tests , Plasmids , Transformation, Bacterial
17.
Int J Antimicrob Agents ; 49(4): 503-506, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28242259

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) frequently colonises the upper respiratory tract and is an important cause of respiratory infections. Resistance to antibiotics is an emerging trend in NTHi and alternative prevention or treatment strategies are required. Haemophilus haemolyticus is a common commensal occupying the same niche as NTHi and, if able to produce substances that inhibit NTHi growth, may have a role as a probiotic. In this study, ammonium sulphate extracts from broth culture of 100 H. haemolyticus isolates were tested for the presence of substances inhibitory to NTHi using a well diffusion assay. One isolate produced a substance that consistently inhibited the growth of NTHi. The substance was inactivated by protease enzymes and had a molecular size of ca. 30 kDa as determined by size exclusion chromatography. When the substance was tested against bacteria from eight Gram-negative and three Gram-positive genera, only Haemophilus spp. were inhibited. Quantitative PCR testing showed the substance to be different to 'haemocin', the previously described bacteriocin of H. influenzae type b. These molecular characteristics, together with narrow-spectrum activity, suggest the substance may be a novel bacteriocin, and there is potential for this H. haemolyticus isolate to function as a probiotic for reduction of colonisation and subsequent infection with NTHi.


Subject(s)
Anti-Bacterial Agents/metabolism , Antibiosis , Bacteriocins/metabolism , Haemophilus/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Bacteriocins/chemistry , Bacteriocins/isolation & purification , Haemophilus/growth & development , Haemophilus/metabolism , Molecular Weight , Proteolysis
18.
Can J Microbiol ; 62(12): 1013-1020, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27763775

ABSTRACT

Information is lacking regarding the precision of microtitre plate (MTP) assays used to measure biofilm. This study investigated the precision of an MTP assay to measure biofilm production by nontypeable Haemophilus influenzae (NTHi) and the effects of frozen storage and inoculation technique on biofilm production. The density of bacterial final growth was determined by absorbance after 18-20 h incubation, and biofilm production was then measured by absorbance after crystal violet staining. Biofilm formation was categorised as high and low for each strain. For the high biofilm producing strains of NTHi, interday reproducibility of NTHi biofilm formation measured using the MTP assay was excellent and met the acceptance criteria, but higher variability was observed in low biofilm producers. Method of inoculum preparation was a determinant of biofilm formation with inoculum prepared directly from solid media showing increased biofilm production for at least one of the high producing strains. In general, storage of NTHi cultures at -80 °C for up to 48 weeks did not have any major effect on their ability to produce biofilm.


Subject(s)
Biofilms/growth & development , Haemophilus Infections/microbiology , Haemophilus influenzae/physiology , Cryopreservation , Humans , Reproducibility of Results
20.
J Microbiol Methods ; 129: 66-69, 2016 10.
Article in English | MEDLINE | ID: mdl-27473508

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) have been shown to have variable ability for in vitro invasion with a range of epithelial cells, and increased invasion of BEAS-2B cells has been associated with altered penicillin binding protein3 (PBP3), which is concerning as these strains are increasing worldwide. The aim of the study was to investigate the effect of respiratory cell type and the presence of altered PBP3 on the in vitro invasion of NTHi. A collection of 16 clinical NTHi isolates was established, 7 had normal PBP3, and 9 had altered PBP3 as defined by an N526K substitution. The isolates were tested for invasion of BEAS-2B, NHBE, A549 and NCI-H292 respiratory epithelial cells in vitro using a gentamicin survival assay, with invasion measured as the percentage of intracellular organisms relative to the initial inoculum. The overall median invasion for the 16 NTHi isolates for cell types BEAS-2B, NHBE, A549 and NCI-H292 cells were 3.17, 2.31, 0.11 and 1.52 respectively. The differences were statistically significant for BEAS-2B compared to A549 (P=0.015) and A549 compared to NCI-H292 (P=0.015), and there were also very marked differences in invasion for some individual isolates depending on the cell type used. There was a consistent bias for invasion of isolates with normal versus abnormal PBP3: and this was statistically significant for BEAS-2B (0.07 to 9.90, P=0.031) and A549 cells (0.02 to 1.68, P=0.037). These results show that NTHi invasion of respiratory epithelial cells in vitro is both strain dependant and influenced significantly by the cell line used, and that the association between altered PBP3 and increased invasion is conserved across multiple cell lines.


Subject(s)
Epithelial Cells/microbiology , Haemophilus influenzae/physiology , Respiratory Mucosa/microbiology , Cell Line , Haemophilus Infections/microbiology , Haemophilus influenzae/classification , Humans , Penicillin-Binding Proteins/metabolism , Polymerase Chain Reaction , Respiratory Mucosa/cytology , Respiratory System/cytology , Respiratory System/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...