Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302758, 2024.
Article in English | MEDLINE | ID: mdl-38748652

ABSTRACT

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Subject(s)
Diving , Oxygen Consumption , Respiratory Rate , Whale, Killer , Animals , Whale, Killer/physiology , Whale, Killer/metabolism , Male , Respiratory Rate/physiology , Female , Oxygen Consumption/physiology , Diving/physiology , Energy Metabolism/physiology , Respiration , Feeding Behavior/physiology
2.
Mov Ecol ; 12(1): 21, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491373

ABSTRACT

BACKGROUND: Ecological and physical conditions vary with depth in aquatic ecosystems, resulting in gradients of habitat suitability. Although variation in vertical distributions among individuals provides evidence of habitat selection, it has been challenging to disentangle how processes at multiple spatio-temporal scales shape behaviour. METHODS: We collected thousands of observations of depth from > 300 acoustically tagged adult Chinook salmon Oncorhynchus tshawytscha, spanning multiple seasons and years. We used these data to parameterize a machine-learning model to disentangle the influence of spatial, temporal, and dynamic oceanographic variables while accounting for differences in individual condition and maturation stage. RESULTS: The top performing machine learning model used bathymetric depth ratio (i.e., individual depth relative to seafloor depth) as a response. We found that bathymetry, season, maturation stage, and spatial location most strongly influenced Chinook salmon depth. Chinook salmon bathymetric depth ratios were deepest in shallow water, during winter, and for immature individuals. We also identified non-linear interactions among covariates, resulting in spatially-varying effects of zooplankton concentration, lunar cycle, temperature and oxygen concentration. CONCLUSIONS: Our results suggest Chinook salmon vertical habitat use is a function of ecological interactions, not physiological constraints. Temporal and spatial variation in depth distributions could be used to guide management decisions intended to reduce fishery impacts on Chinook salmon. More generally, our findings demonstrate how complex interactions among bathymetry, seasonality, location, and life history stage regulate vertical habitat selection.

3.
PLoS One ; 19(3): e0299291, 2024.
Article in English | MEDLINE | ID: mdl-38507673

ABSTRACT

Transient killer whales have been documented hunting marine mammals across a variety of habitats. However, relatively little has been reported about their predatory behaviours near deep submarine canyons and oceanic environments. We used a long-term database of sightings and encounters with these predators in and around the Monterey Submarine Canyon, California to describe foraging behaviour, diet, seasonal occurrence, and habitat use patterns. Transient killer whales belonging to the outer coast subpopulation were observed within the study area 261 times from 2006-2021. Occurrences, behaviours, and group sizes all varied seasonally, with more encounters occurring in the spring as grey whales migrated northward from their breeding and calving lagoons in Mexico (March-May). Groups of killer whales foraged exclusively in open water, with individuals within the groups following the contours of the submarine canyon as they searched for prey. Focal follows revealed that killer whales spent 51% of their time searching for prey (26% of their time along the shelf-break and upper slope of the canyon, and 25% in open water). The remainder of their time was spent pursuing prey (10%), feeding (23%), travelling (9%), socializing (6%), and resting (1%). Prey species during 87 observed predation events included California sea lions, grey whale calves, northern elephant seals, minke whales, common dolphins, Pacific white-sided dolphins, Dall's porpoise, harbour porpoise, harbour seals, and sea birds. The calculated kill rates (based on 270 hours of observing 50 predation events) were 0.26 California sea lions per killer whale over 24 hours, 0.11 grey whale calves, and 0.15 for all remaining prey species combined. These behavioural observations provide insights into predator-prey interactions among apex predators over submarine canyons and deep pelagic environments.


Subject(s)
Caniformia , Phoca , Sea Lions , Whale, Killer , Animals , Whales , Predatory Behavior , Water
4.
PLoS One ; 19(3): e0297768, 2024.
Article in English | MEDLINE | ID: mdl-38507405

ABSTRACT

Over the past two decades, increasing numbers of humpback whales have been returning to feed in the inshore waters of British Columbia (BC) where marine aquaculture farms are situated. This has led to growing concerns that the presence of aquaculture farms may pose an entanglement threat to humpback whales. However, it is not known whether aquaculture facilities attract humpback whales, or whether there are factors that increase the likelihood of humpback whale, becoming entangled and dying. We examined eight reports of humpback whales interacting with Atlantic salmon farms in BC from 2008 to 2021 to evaluate the conditions that may have contributed to their entanglements. Of the eight entangled humpbacks, three individuals died and five were successfully disentangled and released. All were young animals (1 calf, 7 subadults). Multiple factors were associated with two or more of the reported incidents. These included facility design, environmental features, seasonality, humpback whale age, and feeding behaviour. We found that humpback whales were most commonly entrapped in the predator nets of the aquaculture facilities (6/8 incidents), and were less often entangled in anchor support lines (2/8). The presence of salmon smolts did not appear to be an attractant for humpback whales given that half of the reported entanglements (4/8) occurred at fallowed salmon farms. Almost all of the entanglements (7/8) occurred in late winter (prior to the seasonal return of humpbacks) and during late fall (after most humpbacks have migrated south). Overall, the number of humpback whales impacted by fish farms was small compared to the numbers that return to BC (> 7,000) and accounted for <6% of all types of reported entanglements in BC. Human intervention was required to release humpback whales at fish farms, which points to the need to have well-established protocols to minimize entanglements and maximize successful releases.


Subject(s)
Humpback Whale , Salmo salar , Animals , Humans , British Columbia , Feeding Behavior , Fisheries
5.
J Exp Zool A Ecol Integr Physiol ; 341(4): 458-469, 2024 05.
Article in English | MEDLINE | ID: mdl-38409932

ABSTRACT

The increased size and enhanced compliance of the aortic bulb-the enlargement of the ascending aorta-are believed to maintain blood flow in pinnipeds during extended periods of diastole induced by diving bradycardia. The aortic bulb has been described ex vivo in several species of pinnipeds, but in vivo measurements are needed to investigate the relationship between structure and function. We obtained ultrasound images using electrocardiogram-gated transesophageal echocardiography during anesthesia and after atropine administration to assess the relationship between aortic bulb anatomy and cardiac function (heart rate, stroke volume, cardiac output) in northern fur seals (Callorhinus ursinus) and Steller sea lions (Eumetopias jubatus). We observed that the aortic bulb in northern fur seals and Steller sea lions expands during systole and recoils over the entire diastolic period indicating that blood flow is maintained throughout the entire cardiac cycle as expected. The stroke volumes we measured in the fur seals and sea lions fit the values predicted based on body size in mammals and did not change with increased heart rates, suggesting that greater stroke volumes are not needed for aortic bulb function. Overall, our results suggest that peripheral vasoconstriction during diving is sufficient to modulate the volume of blood in the aortic bulb to ensure that flow lasts over the entire diastolic period. These results indicate that the shift of blood into the aortic bulb of pinnipeds is a fundamental mechanism caused by vasoconstriction while diving, highlighting the importance of this unique anatomical adaptation.


Subject(s)
Caniformia , Fur Seals , Sea Lions , Animals , Aorta, Thoracic , Body Size
6.
PLoS One ; 18(10): e0293478, 2023.
Article in English | MEDLINE | ID: mdl-37883427

ABSTRACT

More than 20 global marine extinctions and over 700 local extinctions have reportedly occurred during the past 500 years. However, available methods to determine how many of these species can be confidently declared true disappearances tend to be data-demanding, time-consuming, and not applicable to all taxonomic groups or scales of marine extinctions (global [G] and local [L]). We developed an integrated system to assess marine extinctions (ISAME) that can be applied to any taxonomic group at any geographic scale. We applied the ISAME method to 10 case studies to illustrate the possible ways in which the extinction status of marine species can be categorized as unverified, possibly extinct, or extinct. Of the 10 case studies we assessed, the ISAME method concludes that 6 should be categorized as unverified extinctions due to problems with species' identity and lack of reliable evidence supporting their disappearance (periwinkle-Littoraria flammea [G], houting-Coregonus oxyrinchus [G], long-spined urchin-Diadema antillarum [L], smalltooth sawfish-Pristis pectinata [L], and largetooth sawfish-P. pristis [L]). In contrast, ISAME classified the Guadalupe storm-petrel (Oceanodroma macrodactyla [G]) and the lost shark (Carcharhinus obsolerus [G]) as possibly extinct because the available evidence indicates that their extinction is plausible-while the largetooth sawfish [L] and Steller's sea cow (Hydrodamalis gigas [G]) were confirmed to be extinct. Determining whether a marine population or species is actually extinct or still extant is needed to guide conservation efforts and prevent further biodiversity losses.


Subject(s)
Dugong , Sharks , Skates, Fish , Trichechus manatus , Animals , Sirenia , Biodiversity , Birds , Extinction, Biological
7.
Sci Data ; 9(1): 68, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236843

ABSTRACT

Marine trophic ecology data are in high demand as natural resource agencies increasingly adopt ecosystem-based management strategies that account for complex species interactions. Harbour seal (Phoca vitulina) diet data are of particular interest because the species is an abundant predator in the northeast Pacific Ocean and Salish Sea ecosystem that consumes Pacific salmon (Oncorhynchus spp.). A multi-agency effort was therefore undertaken to produce harbour seal diet data on an ecosystem scale using, 1) a standardized set of scat collection and analysis methods, and 2) a newly developed DNA metabarcoding diet analysis technique designed to identify prey species and quantify their relative proportions in seal diets. The DNA-based dataset described herein contains records from 4,625 harbour seal scats representing 52 haulout sites, 7 years, 12 calendar months, and a total of 11,641 prey identifications. Prey morphological hard parts analyses were conducted alongside, resulting in corresponding hard parts data for 92% of the scat DNA samples. A custom-built prey DNA sequence database containing 201 species (192 fishes, 9 cephalopods) is also provided.


Subject(s)
DNA , Diet , Phoca , Animals , DNA Barcoding, Taxonomic , Ecosystem
8.
Mar Mamm Sci ; 37(4): 1428-1453, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34690418

ABSTRACT

Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.

9.
Front Physiol ; 12: 690029, 2021.
Article in English | MEDLINE | ID: mdl-34630134

ABSTRACT

Although the ability of marine mammals to lower heart rates for extended periods when diving is well documented, it is unclear whether marine mammals have electrophysiological adaptations that extend beyond overall bradycardia. We analyzed electrocardiographic data from 50 species of terrestrial mammals and 19 species of marine mammals to determine whether the electrical activity of the heart differs between these two groups of mammals. We also tested whether physiological state (i.e., anesthetized or conscious) affects electrocardiogram (ECG) parameters. Analyses of ECG waveform morphology (heart rate, P-wave duration, and PQ, PR, QRS, and QT intervals) revealed allometric relationships between body mass and all ECG intervals (as well as heart rate) for both groups of mammals and specific differences in ECG parameters between marine mammals and their terrestrial counterparts. Model outputs indicated that marine mammals had 19% longer P-waves, 24% longer QRS intervals, and 21% shorter QT intervals. In other words, marine mammals had slower atrial and ventricular depolarization, and faster ventricular repolarization than terrestrial mammals. Heart rates and PR intervals were not significantly different between marine and terrestrial mammals, and physiological state did not significantly affect any ECG parameter. On average, ECG interval durations of marine and terrestrial mammals scaled with body mass to the power of 0.21 (range: 0.19-0.23) rather than the expected 0.25-while heart rate scaled with body mass to the power of -0.22 and was greater than the widely accepted -0.25 derived from fractal geometry. Our findings show clear differences between the hearts of terrestrial and marine mammals in terms of cardiac timing that extend beyond diving bradycardia. They also highlight the importance of considering special adaptations (such as breath-hold diving) when analyzing allometric relationships.

10.
J Zoo Wildl Med ; 52(2): 507-519, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34130393

ABSTRACT

Pinniped hearts have been well described via dissection, but in vivo measurements of cardiac structure, function, and electrophysiology are lacking. Electrocardiograms (ECGs) were recorded under anesthesia from eight Steller sea lions (Eumetopias jubatus), five northern fur seals (Callorhinus ursinus), and one walrus (Odobenus rosmarus) to investigate cardiac electrophysiology in pinnipeds. In addition, echocardiograms were performed on all eight anesthetized Steller sea lions to evaluate in vivo cardiac structure and function. Measured and calculated ECG parameters included P-wave, PQ, QRS, and QT interval durations, P-, R-, and T-wave amplitudes, P- and T-wave polarities, and the mean electrical axis (MEA). Measured and calculated echocardiographic parameters included left ventricular internal diameter, interventricular septum thickness, and left ventricular posterior wall thickness in systole and diastole (using M-mode), left atrium and aortic root dimensions (using 2D), and maximum aortic and pulmonary flow velocities (using pulsed-wave spectral Doppler). ECG measurements were similar to those reported for other pinniped species, but there was considerable variation in the MEAs of Steller sea lions and northern fur seals. Echocardiographic measurements were similar to those reported for southern sea lions (Otaria flavenscens), including five out of eight Steller sea lions having a left atrial to aortic root ratio <1, which may indicate that they have an enlarged aortic root compared to awake terrestrial mammals. Isoflurane anesthesia likely affected some of the measurements as evidenced by the reduced fractional shortening found in Steller sea lions compared to awake terrestrial mammals. The values reported are useful reference points for assessing cardiac health in pinnipeds under human care.


Subject(s)
Anesthesia/veterinary , Echocardiography/veterinary , Fur Seals , Heart/anatomy & histology , Sea Lions , Walruses , Animals , Electrocardiography/veterinary , Female , Male , Species Specificity
11.
Sci Rep ; 10(1): 20249, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219277

ABSTRACT

As zooplanktivorous predators, bowhead whales (Balaena mysticetus) must routinely locate patches of prey that are energy-rich enough to meet their metabolic needs. However, little is known about how the quality and quantity of prey might influence their feeding behaviours. We addressed this question using a new approach that included: (1) multi-scale biologging and unmanned aerial system observations of bowhead whales in Cumberland Sound, Nunavut (Canada), and (2) an optical plankton counter (OPC) and net collections to identify and enumerate copepod prey species through the water column. The OPC data revealed two prey layers comprised almost exclusively of lipid-rich calanoid copepods. The deep layer contained fewer, but larger, particles (10% greater overall biomass) than the shallow prey layer. Dive data indicated that the whales conducted long deep Square-shaped dives (80% of dives; averaging depth of 260.4 m) and short shallow Square-shaped dives (16%; averaging depth of 22.5 m) to feed. The whales tended to dive proportionally more to the greater biomass of zooplankton that occurred at depth. Combining behavioural recordings with prey sampling showed a more complex feeding ecology than previously understood, and provides a means to evaluate the energetic balance of individuals under current environmental conditions.


Subject(s)
Bowhead Whale/physiology , Feeding Behavior/physiology , Zooplankton , Animals
12.
J Mammal ; 101(3): 742-754, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32665741

ABSTRACT

Understanding variability in growth patterns of marine mammals provides insights into the health of individuals and status of populations. Body growth of gray whales (Eschrichtius robustus) has been described for particular life stages, but has not been quantified across all ages. We derived a comprehensive growth equation for gray whales by fitting a two-phased growth model to age-specific length data of eastern North Pacific gray whales that were captured, stranded, or harvested between 1926 and 1997. To predict mass-at-age, we used the allometric relationship between mass and length. We found that on average (± SD), calves were 4.6 ± 0.043 m and 972 ± 26 kg at birth, and reached 8.5 ± 0.095 m and 6,019 ± 196 kg by the end of their first year of life (n = 118). Thus, calves almost double (2×) in length and octuple (8×) in mass while nursing, and are effectively about two-thirds of their asymptotic adult length and one-third of their maximum mass when weaned. The large sample of aged individuals (n = 730) indicates that gray whales live up to ~48 years and have a life expectancy of < 30 years. Adult females attain a mean (± SD) asymptotic size of 13.1 ± 0.048 m and 20,758 ± 222 kg, while the smaller males average 12.6 ± 0.048 m and 19,938 ± 222 kg at ~40 years of age. Females are thereby ~4% longer and heavier than males. These age-specific estimates of body size can be used to estimate food requirements and assess nutritional status of individuals.

13.
J Zoo Wildl Med ; 49(1): 18-29, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29517439

ABSTRACT

Decreased health may have lowered the birth and survival rates of Steller sea lions ( Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands over the past 30 yr. Reference ranges for clinical hematology and serum chemistry parameters needed to assess the health of wild sea lion populations are limited. Here, blood parameters were serially measured in 12 captive female Steller sea lions ranging in age from 3 wk to 16 yr to establish baseline values and investigate age-related changes. Whether diving activity affects hematology parameters in animals swimming in the ocean compared with animals in a traditional aquarium setting was also examined. Almost all blood parameters measured exhibited significant changes with age. Many of the age-related changes reflected developmental life history changes, including a change in diet during weaning, an improvement of diving capacity, and the maturity of the immune system. Mean corpuscular hemoglobin and mean corpuscular volume were also higher in the ocean diving group compared with the aquarium group, likely reflecting responses to increased exercise regimes. These data provide ranges of hematology and serum chemistry values needed to evaluate and compare the health and nutritional status of captive and wild Steller sea lions.


Subject(s)
Aging/physiology , Diving/physiology , Hematologic Tests/veterinary , Physical Conditioning, Animal/physiology , Sea Lions/blood , Animals , Animals, Zoo , Female , Nutritional Status , Reference Values , Sea Lions/physiology
14.
15.
PLoS One ; 12(11): e0186156, 2017.
Article in English | MEDLINE | ID: mdl-29166385

ABSTRACT

Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas-likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.


Subject(s)
Behavior, Animal/physiology , Bowhead Whale/physiology , Molting/physiology , Animals , Arctic Regions , Bowhead Whale/anatomy & histology , Energy Metabolism , Geography , Image Processing, Computer-Assisted , Nunavut
16.
Ecol Evol ; 7(9): 2969-2976, 2017 05.
Article in English | MEDLINE | ID: mdl-28479996

ABSTRACT

Time and energy are the two most important currencies in animal bioenergetics. How much time animals spend engaged in different activities with specific energetic costs ultimately defines their likelihood of surviving and successfully reproducing. However, it is extremely difficult to determine the energetic costs of independent activities for free-ranging animals. In this study, we developed a new method to calculate activity-specific metabolic rates, and applied it to female fur seals. We attached biologgers (that recorded GPS locations, depth profiles, and triaxial acceleration) to 12 northern (Callorhinus ursinus) and 13 Antarctic fur seals (Arctocephalus gazella), and used a hierarchical decision tree algorithm to determine time allocation between diving, transiting, resting, and performing slow movements at the surface (grooming, etc.). We concomitantly measured the total energy expenditure using the doubly-labelled water method. We used a general least-square model to establish the relationship between time-activity budgets and the total energy spent by each individual during their foraging trip to predict activity-specific metabolic rates. Results show that both species allocated similar time to diving (~29%), transiting to and from their foraging grounds (~26-30%), and resting (~8-11%). However, Antarctic fur seals spent significantly more time grooming and moving slowly at the surface than northern fur seals (36% vs. 29%). Diving was the most expensive activity (~30 MJ/day if done non-stop for 24 hr), followed by transiting at the surface (~21 MJ/day). Interestingly, metabolic rates were similar between species while on land or while slowly moving at the surface (~13 MJ/day). Overall, the average field metabolic rate was ~20 MJ/day (for all activities combined). The method we developed to calculate activity-specific metabolic rates can be applied to terrestrial and marine species to determine the energetic costs of daily activities, as well as to predict the energetic consequences for animals forced to change their time allocations in response to environmental shifts.

17.
PLoS One ; 12(4): e0174001, 2017.
Article in English | MEDLINE | ID: mdl-28453563

ABSTRACT

The efficiency with which individuals extract energy from their environment defines their survival and reproductive success, and thus their selective contribution to the population. Individuals that forage more efficiently (i.e., when energy gained exceeds energy expended) are likely to be more successful at raising viable offspring than individuals that forage less efficiently. Our goal was to test this prediction in large long-lived mammals under free-ranging conditions. To do so, we equipped 20 lactating Antarctic fur seals (Arctocephalus gazella) breeding on Kerguelen Island in the Southern Ocean with tags that recorded GPS locations, depth and tri-axial acceleration to determine at-sea behaviours and detailed time-activity budgets during their foraging trips. We also simultaneously measured energy spent at sea using the doubly-labeled water (DLW) method, and estimated the energy acquired while foraging from 1) type and energy content of prey species present in scat remains, and 2) numbers of prey capture attempts determined from head acceleration. Finally, we followed the growth of 36 pups from birth until weaning (of which 20 were the offspring of our 20 tracked mothers), and used the relative differences in body mass of pups at weaning as an index of first year survival and thus the reproductive success of their mothers. Our results show that females with greater foraging efficiencies produced relatively bigger pups at weaning. These mothers achieved greater foraging efficiency by extracting more energy per minute of diving rather than by reducing energy expenditure. This strategy also resulted in the females spending less time diving and less time overall at sea, which allowed them to deliver higher quality milk to their pups, or allowed their pups to suckle more frequently, or both. The linkage we demonstrate between reproductive success and the quality of individuals as foragers provides an individual-based quantitative framework to investigate how changes in the availability and accessibility of prey can affect fitness of animals.


Subject(s)
Energy Metabolism , Fur Seals/physiology , Reproduction , Animals , Body Size , Female , Fur Seals/growth & development , Fur Seals/metabolism , Predatory Behavior , Weaning
18.
Mov Ecol ; 5: 3, 2017.
Article in English | MEDLINE | ID: mdl-28239473

ABSTRACT

BACKGROUND: We sought to quantitatively describe the fine-scale foraging behavior of northern resident killer whales (Orcinus orca), a population of fish-eating killer whales that feeds almost exclusively on Pacific salmon (Oncorhynchus spp.). To reconstruct the underwater movements of these specialist predators, we deployed 34 biologging Dtags on 32 individuals and collected high-resolution, three-dimensional accelerometry and acoustic data. We used the resulting dive paths to compare killer whale foraging behavior to the distributions of different salmonid prey species. Understanding the foraging movements of these threatened predators is important from a conservation standpoint, since prey availability has been identified as a limiting factor in their population dynamics and recovery. RESULTS: Three-dimensional dive tracks indicated that foraging (N = 701) and non-foraging dives (N = 10,618) were kinematically distinct (Wilks' lambda: λ16 = 0.321, P < 0.001). While foraging, killer whales dove deeper, remained submerged longer, swam faster, increased their dive path tortuosity, and rolled their bodies to a greater extent than during other activities. Maximum foraging dive depths reflected the deeper vertical distribution of Chinook (compared to other salmonids) and the tendency of Pacific salmon to evade predators by diving steeply. Kinematic characteristics of prey pursuit by resident killer whales also revealed several other escape strategies employed by salmon attempting to avoid predation, including increased swimming speeds and evasive maneuvering. CONCLUSIONS: High-resolution dive tracks reconstructed using data collected by multi-sensor accelerometer tags found that movements by resident killer whales relate significantly to the vertical distributions and escape responses of their primary prey, Pacific salmon.

19.
J Comp Physiol B ; 187(1): 29-50, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27686668

ABSTRACT

Marine mammals are characterized as having physiological specializations that maximize the use of oxygen stores to prolong time spent under water. However, it has been difficult to undertake the requisite controlled studies to determine the physiological limitations and trade-offs that marine mammals face while diving in the wild under varying environmental and nutritional conditions. For the past decade, Steller sea lions (Eumetopias jubatus) trained to swim and dive in the open ocean away from the physical confines of pools participated in studies that investigated the interactions between diving behaviour, energetic costs, physiological constraints, and prey availability. Many of these studies measured the cost of diving to understand how it varies with behaviour and environmental and physiological conditions. Collectively, these studies show that the type of diving (dive bouts or single dives), the level of underwater activity, the depth and duration of dives, and the nutritional status and physical condition of the animal affect the cost of diving and foraging. They show that dive depth, dive and surface duration, and the type of dive result in physiological adjustments (heart rate, gas exchange) that may be independent of energy expenditure. They also demonstrate that changes in prey abundance and nutritional status cause sea lions to alter the balance between time spent at the surface acquiring oxygen (and offloading CO2 and other metabolic by-products) and time spent at depth acquiring prey. These new insights into the physiological basis of diving behaviour further our understanding of the potential scope for behavioural responses of marine mammals to environmental changes, the energetic significance of these adjustments, and the consequences of approaching physiological limits.


Subject(s)
Diving/physiology , Sea Lions/physiology , Animals , Energy Metabolism , Oceans and Seas
20.
Sci Rep ; 6: 33912, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658718

ABSTRACT

Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has never been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labelled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6-1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R2 = 0.76) and to a lesser extent while transiting (R2 = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R2 = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude × number of strokes) predicted total energy expenditure (R2 = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.

SELECTION OF CITATIONS
SEARCH DETAIL
...