Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(3): e0051023, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37052506

ABSTRACT

Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.


Subject(s)
Hedgehog Proteins , Neocortex , Pregnancy , Female , Humans , Hedgehog Proteins/metabolism , Neocortex/metabolism , Toll-Like Receptor 2/metabolism , Ligands , Toll-Like Receptor 6/metabolism
2.
Adv Radiat Oncol ; 7(6): 100989, 2022.
Article in English | MEDLINE | ID: mdl-36420184

ABSTRACT

Purpose: An evolutionary action scoring algorithm (EAp53) based on phylogenetic sequence variations stratifies patients with head and neck squamous cell carcinoma (HNSCC) bearing TP53 missense mutations as high-risk, associated with poor outcomes, or low-risk, with similar outcomes as TP53 wild-type, and has been validated as a reliable prognostic marker. We performed this study to further validate prior findings demonstrating that EAp53 is a prognostic marker for patients with locally advanced HNSCC and explored its predictive value for treatment outcomes to adjuvant bio-chemoradiotherapy. Methods and Materials: Eighty-one resection samples from patients treated surgically for stage III or IV human papillomavirus-negative HNSCC with high-risk pathologic features, who received either radiation therapy + cetuximab + cisplatin (cisplatin) or radiation therapy + cetuximab + docetaxel (docetaxel) as adjuvant treatment in a phase 2 study were subjected to TP53 targeted sequencing and EAp53 scoring to correlate with clinical outcomes. Due to the limited sample size, patients were combined into 2 EAp53 groups: (1) wild-type or low-risk; and (2) high-risk or other. Results: At a median follow-up of 9.8 years, there was a significant interaction between EAp53 group and treatment for overall survival (P = .008), disease-free survival (P = .05), and distant metastasis (DM; P = .004). In wild-type or low-risk group, the docetaxel arm showed significantly better overall survival (hazard ratio [HR] 0.11, [0.03-0.36]), disease-free survival (HR 0.24, [0.09-0.61]), and less DM (HR 0.04, [0.01-0.31]) than the cisplatin arm. In high-risk or other group, differences between treatments were not statistically significant. Conclusions: The docetaxel arm was associated with better survival than the cisplatin arm for patients with wild-type or low-risk EAp53. These benefits appear to be largely driven by a reduction in DM.

3.
Cancer Discov ; 12(9): 2098-2119, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35792801

ABSTRACT

Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE: Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Antigens, CD19 , Humans , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism
4.
Nat Immunol ; 23(5): 781-790, 2022 05.
Article in English | MEDLINE | ID: mdl-35383307

ABSTRACT

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Humans , Phenotype , Receptors, Antigen, T-Cell/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic , mRNA Vaccines
5.
medRxiv ; 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34341799

ABSTRACT

Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the ex vivo profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection. We found that the order of exposure determined the relative distribution between spike- and non-spike-specific responses, with vaccination after infection leading to further expansion of spike-specific T cells and differentiation to a CCR7-CD45RA+ effector phenotype. In contrast, individuals experiencing a breakthrough infection mount vigorous non-spike-specific responses. In-depth analysis of over 4,000 epitope-specific T cell receptor sequences demonstrates that all types of exposures elicit diverse repertoires characterized by shared, dominant TCR motifs, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and that current vaccination protocols continue to expand and differentiate spike-specific memory responses.

6.
Clin Cancer Res ; 24(7): 1727-1733, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29330202

ABSTRACT

Purpose: Development of extranodal extension (ENE) has been associated with poor survival in patients with oral cavity squamous cell carcinoma (OSCC). Here, we sought to confirm the role of ENE as a poor prognostic factor, and identify genomic and epigenetic markers of ENE in order to develop a predictive model and improve treatment selection.Experimental Design: An institutional cohort (The University of Texas MD Anderson Cancer Center) was utilized to confirm the impact of ENE on clinical outcomes and evaluate the genomic signature of primary and ENE containing tissue. OSCC data from The Cancer Genome Atlas (TCGA) were analyzed for the presence of molecular events associated with nodal and ENE status.Results: ENE was associated with decreased overall and disease-free survival. Mutation of the TP53 gene was the most common event in ENE+ OSCC. The frequency of TP53 mutation in ENE+ tumors was higher compared with ENE- tumors and wild-type (WT) TP53 was highly represented in pN0 tumors. pN+ENE+ patients had the highest proportion of high-risk TP53 mutations. Both primary tumors (PT) and lymph nodes with ENE (LN) exhibited a high rate of TP53 mutations (58.8% and 58.8%, respectively) with no significant change in allele frequency between the two tissue sites.Conclusions: ENE is one of the most significant markers of OSCC OS and DFS. There is a shift toward a more aggressive biological phenotype associated with high-risk mutations of the TP53 gene. Prospective clinical trials are required to determine whether TP53 mutational status can be used for personalized treatment decisions. Clin Cancer Res; 24(7); 1727-33. ©2018 AACR.


Subject(s)
Carcinoma, Squamous Cell/genetics , Mouth Neoplasms/genetics , Mouth/pathology , Mutation/genetics , Tumor Suppressor Protein p53/genetics , Cohort Studies , Disease-Free Survival , Female , Humans , Lymph Nodes/pathology , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Prognosis , Retrospective Studies
7.
Cancer ; 124(1): 84-94, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29053175

ABSTRACT

BACKGROUND: Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. METHODS: The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. RESULTS: HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. CONCLUSIONS: HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society.


Subject(s)
Carcinoma, Squamous Cell/genetics , HIV Infections/complications , Head and Neck Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Cadherins/genetics , Carcinoma, Squamous Cell/complications , Case-Control Studies , Caspase 8/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin D1/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , ErbB Receptors/genetics , F-Box-WD Repeat-Containing Protein 7/genetics , Female , HLA-A Antigens/genetics , Head and Neck Neoplasms/complications , Histone Methyltransferases , Histone-Lysine N-Methyltransferase , Humans , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/genetics , Kelch-Like ECH-Associated Protein 1/genetics , LIM Domain Proteins/genetics , Male , Middle Aged , NF-E2-Related Factor 2/genetics , Nuclear Proteins/genetics , Papillomaviridae/genetics , Papillomavirus Infections/complications , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Squamous Cell Carcinoma of Head and Neck , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...