Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36771860

ABSTRACT

Hydroxyapatite has the closest chemical composition to human bone. Despite this, the use of nano-hydroxyapatite (nHA) to produce biocomposite scaffolds from a mixture of polylactic acid (PLA) and polycaprolactone (PCL) using cold isostatic pressing has not been studied intensively. In this study, biocomposites were created employing nHA as an osteoconductive filler and a polymeric blend of PLA and PCL as a polymer matrix for prospective usage in the medical field. Cold isostatic pressing and subsequent sintering were used to create composites with different nHA concentrations that ranged from 0 to 30 weight percent. Using physical and mechanical characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and density, porosity, tensile, and flexural standard tests, it was determined how the nHA concentrations affected the biocomposite's general properties. In this study, the presence of PLA, PCL, and nHA was well identified using FTIR, XRD, and SEM methods. The biocomposites with high nHA content showed intense bands for symmetric stretching and the asymmetric bending vibration of PO43-. The incorporation of nHA into the polymeric blend matrix resulted in a rather irregular structure and the crystallization became more difficult. The addition of nHA improved the density and tensile and flexural strength of the PLA/PCL matrix (0% nHA). However, with increasing nHA content, the PLA/PCL/nHA biocomposites became more porous. In addition, the density, flexural strength, and tensile strength of the PLA/PCL/nHA biocomposites decreased with increasing nHA concentration. The PLA/PCL/nHA biocomposites with 10% nHA had the highest mechanical properties with a density of 1.39 g/cm3, a porosity of 1.93%, a flexural strength of 55.35 MPa, and a tensile strength of 30.68 MPa.

2.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295464

ABSTRACT

Polylactic acid (PLA) and polycaprolactone (PCL) are synthetic polymers that are extensively used in biomedical applications. However, the PLA/PCL blend produced by ball milling, followed by pressure compaction and sintering, has not been extensively explored. The goal of this research is to investigate the effect of the composition of biomaterials derived from PLA and PCL prepared by ball milling, followed by pressure compaction and sintering, on mechanical and physical properties. PCL and PLA with various concentrations were blended utilizing a ball milling machine for 2 h at an 80-rpm rotation speed. The obtained mixture was placed in a stainless steel 304 mold for the compacting process, which uses a pressure of 30 MPa to create a green body. The sintering procedure was carried out on the green body created at 150 °C for 2 h using a digital oven. The obtained PLA/PCL blend was tested using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), density, porosity, and three-point bending. Following the interaction between PCL and PLA in the PLA/PCL blend, the FTIR spectra and XRD diffractograms obtained in this work revealed a number of modifications in the functional groups and crystal phase. The 90PLA specimen had the best mechanical properties, with a maximum force and displacement of 51.13 N and 7.21 mm, respectively. The porosity of the PLA/PCL blend decreased with increasing PLA concentration so that the density and flexural properties of the PLA/PCL blend increased. The higher PCL content decreased the stiffness of the PLA molecular chain, consequently reducing its flexural properties.

3.
Polymers (Basel) ; 13(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641039

ABSTRACT

OBJECTIVE: This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. METHOD: Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. RESULTS: From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. SIGNIFICANCE: The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%.

SELECTION OF CITATIONS
SEARCH DETAIL
...