Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063021

ABSTRACT

Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.


Subject(s)
Blood Platelets , Blood Preservation , Platelet Transfusion , Humans , Blood Platelets/metabolism , Blood Preservation/methods , Platelet Transfusion/methods , Proteomics/methods , Metabolomics/methods
2.
J Photochem Photobiol B ; 257: 112958, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875890

ABSTRACT

The effect of simultaneous application of tert-butyl hydroperoxide (tBHP) and polychromatic near-infrared (NIR) radiation on bovine blood was examined to determine whether NIR light decreases the susceptibility of red blood cells (RBCs) to oxidative stress. The study assessed various exposure methods, wavelength ranges, and optical filtering types. Continuous NIR exposure revealed a biphasic response in cell-free hemoglobin changes, with antioxidative effects observed at low fluences and detrimental effects at higher fluences. Optimal exposure duration was identified between 60 s and 15 min. Protective effects were also tested across wavelengths in the range of 750-1100 nm, with all of them reducing hemolysis, notably at 750 nm, 875 nm, and 900 nm. Comparing broadband NIR and far-red light (750 nm) showed no significant difference in hemolysis reduction. Pulse-dosed NIR irradiation allowed safe increases in radiation dose, effectively limiting hemolysis at higher doses where continuous exposure was harmful. These findings highlight NIR photobiomodulation's potential in protecting RBCs from oxidative stress and will be helpful in the effective design of novel medical therapeutic devices.


Subject(s)
Erythrocytes , Hemolysis , Infrared Rays , Oxidative Stress , tert-Butylhydroperoxide , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Erythrocytes/radiation effects , Erythrocytes/metabolism , Erythrocytes/drug effects , Cattle , Animals , Hemolysis/drug effects , Hemolysis/radiation effects , tert-Butylhydroperoxide/pharmacology , Dose-Response Relationship, Radiation , Hemoglobins/metabolism
3.
Res Vet Sci ; 171: 105219, 2024 May.
Article in English | MEDLINE | ID: mdl-38471346

ABSTRACT

Combat training of police horses, involving physical activity in the presence of environmental stressors, poses a risk of oxidative stress. This study compared the oxidative imbalance after combat training in horses in the regular police service and in horses that had just been schooled. Blood collection was performed immediately after training and after 16 h rest. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant status (TAS) were determined as the markers of enzymatic antioxidant defence. At the same time, lipid peroxidation (TBARS) and protein carbonylation (Carb) were assessed as oxidation biomarkers. Additionally, oxidative imbalance indexes such as SOD/CAT, SOD/GPx, TBARS/TAS and TBARS/GPx were calculated. Animals during schooling had significantly lower SOD activity in erythrocytes than those experienced. CAT activity in erythrocytes was insignificantly higher immediately after training than during recovery. The SOD/GPx ratio was higher in experienced animals, which may reflect the intra-erythrocyte imbalance between enzymes producing and degrading hydrogen peroxide towards the first one. The concentration of carbonyl groups was significantly higher after the combat training compared to the recovery period in all horses. In inexperienced animals slight increase in TBARS/TAS and TBARS/GPx indexes were observed during the recovery time after exercises, contrary to experienced horses, in which these markers decreased slightly. These results suggest that the oxidative imbalance in inexperienced horses, although less pronounced just after combat training, was more prolonged as compared to horses in regular service.


Subject(s)
Antioxidants , Oxidative Stress , Animals , Horses , Antioxidants/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Catalase , Oxidation-Reduction , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxidation
4.
BMC Vet Res ; 18(1): 255, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35778742

ABSTRACT

Blood transfusions are mainly given to intensive care patients; therefore, additional complications that could arise from storage lesions in preserved blood should be avoided. It has been shown that human stored red blood cells are subject to changes that are considered to be a number of interdependent processes involving metabolic disarrangement and oxidative stress. The aim of our study was to determine alterations in selected hematological and biochemical parameters and to assess whether and when oxidative stress is a significant phenomenon in stored dog CPDA-1 whole blood. Ten ½ unit bags of whole blood donated from dogs and preserved with CPDA-1 (anticoagulant containing citrate, phosphate, dextrose and adenine) were stored for 5 weeks. Each week, a 9 ml sample was drawn aseptically to measure hematological parameters, selected metabolites, free hemoglobin content, osmotic fragility, antioxidant enzyme activity, total antioxidant capacity, malondialdehyde concentration and protein carbonyl content.The results revealed an MCV decrease in the first week of storage and then a gradual increase; osmotic fragility decreased at that time and remained low throughout the study period. Leukodepletion became significant in the fourth week of storage. The free hemoglobin concentration continuously increased, with the greatest changes observed in the last two weeks of storage. The total antioxidant capacity changed in a reverse manner. Superoxide dismutase and glutathione peroxidase activities decreased from week 0 to week 3, and catalase activity tended to decrease over time. The highest malondialdehyde concentrations in blood supernatant were measured in the first week of storage, and the carbonyl concentration increased after 35 days.Hematological changes and oxidative stress are already present in the first week of storage, resulting in depletion of the antioxidant system and subsequent accumulation of oxidation products as well as erythrocyte hemolysis, which are most pronounced at the end of the storage period.


Subject(s)
Antioxidants , Blood Preservation , Adenine , Animals , Antioxidants/metabolism , Blood Preservation/veterinary , Citrates , Dogs , Glucose , Malondialdehyde/metabolism , Oxidative Stress , Phosphates , Protein Carbonylation
5.
Sci Rep ; 12(1): 4042, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260751

ABSTRACT

Photobiomodulation (PBM) in the red/near-infrared (R/NIR) spectral range has become widely recognized due to its anti-inflammatory and cytoprotective potential. We aimed to assess the effects of blood PBM on platelets function and hemolysis in an in vitro setting. Porcine blood samples were separated into four aliquots for this study, one of which served as a control, while the other three were subjected to three different NIR PBM dosages. The platelet count and functions and the plasma free haemoglobin and osmotic fragility of red blood cells were measured during the experiment. The control group had a considerable drop in platelet number, but the NIR exposed samples had more minimal and strictly dose-dependent alterations. These modifications were consistent with ADP and collagen-induced platelet aggregation. Furthermore, red blood cells that had received PBM were more resistant to osmotic stress and less prone to hemolysis, as seen by a slightly lower quantity of plasma free hemoglobin. Here we showed under well-controlled in vitro conditions that PBM reversibly inhibits platelet activation in a dose-dependent manner and reduces hemolysis.


Subject(s)
Blood Platelets , Hemolysis , Animals , Erythrocytes , Hematologic Tests , Platelet Activation , Swine
6.
Int J Radiat Biol ; 95(9): 1326-1336, 2019 09.
Article in English | MEDLINE | ID: mdl-31170016

ABSTRACT

Introduction: Near-infrared (NIR) and red-to-near-infrared (R/NIR) radiation are increasingly applied for therapeutic use. R/NIR-employing therapies aim to stimulate healing, prevent tissue necrosis, increase mitochondrial function, and improve blood flow and tissue oxygenation. The wide range of applications of this radiation raises questions concerning the effects of R/NIR on the immune system. Methods: In this review, we discuss the potential effects of exposure to R/NIR light on immune cells in the context of physical parameters of light. Discussion: The effects that R/NIR may induce in immune cells typically involve the production of reactive oxygen species (ROS), nitrogen oxide (NO), or interleukins. Production of ROS after exposure to R/NIR can either be inhibited or to some extent increased, which suggests that detailed conditions of experiments, such as the spectrum of radiation, irradiance, exposure time, determine the outcome of the treatment. However, a wide range of immune cell studies have demonstrated that exposure to R/NIR most often has an anti-inflammatory effect. Finally, photobiomodulation molecular mechanism with particular attention to the role of interfacial water structure changes for cell physiology and regulation of the inflammatory process was described. Conclusions: Optimization of light parameters allows R/NIR to act as an anti-inflammatory agent in a wide range of medical applications.


Subject(s)
Inflammation/radiotherapy , Infrared Rays/therapeutic use , Animals , Blood/radiation effects , Granulocytes/radiation effects , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology
7.
Biomed Res Int ; 2019: 2181370, 2019.
Article in English | MEDLINE | ID: mdl-31032337

ABSTRACT

INTRODUCTION: Oxidative stress is a state of imbalance between the production of reactive oxygen species and antioxidant defenses. It results in the oxidation of all cellular elements and, to a large extent, proteins, causing inter alia the formation of carbonyl groups in their structures. The study focused on assessment of changes in the plasma protein-bound carbonyls in police horses after combat training and after rest and the applicability of infrared spectroscopy with a Fourier transform, utilizing the attenuated total reflectance (FTIR-ATR) in detecting plasma protein oxidation. METHODS: We evaluated the influence of both the different concentrations of hydrogen peroxide and combat training on protein carbonylation in horse blood plasma. The oxidation of plasma proteins was assessed using a spectrophotometric method based on the carbonyl groups derivatization with 2,4-dinitrophenylhydrazine (DNPH). The measured values were correlated with the carbonyl groups concentrations determined by means of the FTIR-ATR method. RESULTS: The linear correlation between the DNPH and FTIR-ATR methods was shown. The concentration of plasma protein-bound carbonyls significantly deceased in police horses after one-day rest when compared to the values measured directly after the combat training (a drop by 23%, p<0.05 and 29%, p<0.01 measured by DNPH and FTIR-ATR methods, respectively). These results were consistent with the proteins phosphorylation analysis. CONCLUSION: The FTIR-ATR method may be applied to measure the level of plasma proteins peroxidation.


Subject(s)
Antioxidants/metabolism , Blood Proteins/metabolism , Oxidative Stress/drug effects , Protein Carbonylation/drug effects , Animals , Antioxidants/chemistry , Blood Proteins/chemistry , Blood Proteins/drug effects , Horses , Humans , Hydrazines/chemistry , Hydrazines/metabolism , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Reactive Oxygen Species/blood , Spectroscopy, Fourier Transform Infrared
8.
Front Physiol ; 9: 647, 2018.
Article in English | MEDLINE | ID: mdl-29904353

ABSTRACT

Aim: An activation of non-specific inflammatory response, coagulation disorder, and blood morphotic elements damage are the main side effects of the extracorporeal circulation (ECC). Red-to-near-infrared radiation (R/NIR) is thought to be capable of stabilizing red blood cell (RBC) membrane through increasing its resistance to destructive factors. We focused on the development of a method using low-level light therapy (LLLT) in the spectral range of R/NIR which could reduce blood trauma caused by the heart-lung machine during surgery. Methods: R/NIR emitter was adjusted in terms of geometry and optics to ECC circuit. The method of extracorporeal blood photobiomodulation was tested during in vivo experiments in an animal, porcine model (1 h of ECC plus 23 h of animal observation). A total of 24 sows weighing 90-100 kg were divided into two equal groups: control one and LLLT. Blood samples were taken during the experiment to determine changes in blood morphology [RBC and white blood cell (WBC) counts, hemoglobin (Hgb)], indicators of hemolysis [plasma-free hemoglobin (PFHgb), serum bilirubin concentration, serum lactate dehydrogenase (LDH) activity], and oxidative stress markers [thiobarbituric acid reactive substances (TBARS) concentration, total antioxidant capacity (TAC)]. Results: In the control group, a rapid systemic decrease in WBC count during ECC was accompanied by a significant increase in RBC membrane lipids peroxidation, while in the LLLT group the number of WBC and TBARS concentration both remained relatively constant, indicating limitation of the inflammatory process. These results were consistent with the change in the hemolysis markers like PFHgb, LDH, and serum bilirubin concentration, which were significantly reduced in LLLT group. No differences in TAC, RBC count, and Hgb concentration were detected. Conclusion: We presented the applicability of the LLLT with R/NIR radiation to blood trauma reduction during ECC.

SELECTION OF CITATIONS
SEARCH DETAIL
...