Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 83(4): 792-802, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33617487

ABSTRACT

Natural apatites have previously shown a great capacity for phosphate retention from wastewater. However, its fine particle size distribution may lead to a premature clogging of the filter. Accordingly, a granulated apatite product was developed and manufactured in order to control the particle size distribution of the media. Experiments were conducted on laboratory columns to assess their phosphorus retention capacity, to identify the processes involved in phosphorus retention and to evaluate their kinetic rates. The results showed phosphorus retention capacities of 10.5 and 12.4 g PO4-P·kg-1 and kinetic rate coefficients in the range of 0.63 and 0.23 h-1 involving lower values than those found for natural apatites in previous studies. Scanning Electron Microscopy images showed that apatite particles in the granules were embedded in the binder and were not readily accessible to act as seeds for calcium phosphate precipitation. The retention processes differ depending on the supersaturation of the solution with respect to calcium phosphate phases: at low calcium concentrations (69.8 ± 3.9 mg·L-1), hydroxyapatite precipitates fill up the porosity of the binder up to a depth of 100-300 µm from the granule surface; at higher calcium concentrations (112.7 ± 7.4 mg·L-1) precipitation occurs at the granule surface, forming successive layers of hydroxyapatite and carbonated calcium phosphates.


Subject(s)
Apatites , Phosphorus , Durapatite , Kinetics , Porosity
2.
Water Sci Technol ; 77(1-2): 279-285, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29377813

ABSTRACT

Sustainable treatment and management of fecal sludge in rural areas require adapted solutions. Rustic and simple operating processes such as sludge treatment reed beds (STRB) have been increasingly considered for this purpose. The biggest full scale (2,600 m2 of STRB) septage treatment unit in France had been built in Nègrepelisse with the final objectives of reusing treated sludge and leachates for agriculture spreading and tree irrigation, respectively. The aim of this investigation was to validate the treatment chain of this installation. The obtained field data showed firstly that the overall removal efficiencies of STRB were satisfactory and stable. Removal rates higher than 98% for chemical oxygen demand and suspended solids and a 95% for Kjeldahl nitrogen represented so far a beneficial septage treatment by STRB. The highlighted necessity of a suitable complementary leachate treatment (before tree irrigation) justified the presence of the second stage of vertical flow constructed wetland. The sludge deposit drying and mineralization efficiencies were on the right track. According to hydrotextural diagram analysis, surface deposit was however found to have high deformability probably due to the youth of the installation. An in-depth understanding of STRB system needs continuous long-term studies.


Subject(s)
Poaceae/growth & development , Sewage/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Wetlands , Agricultural Irrigation , Biological Oxygen Demand Analysis , Desiccation , Feces/chemistry , France , Nitrogen/analysis
3.
J Environ Manage ; 206: 349-356, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29100147

ABSTRACT

Steel slag filters, if well designed and operated, may upgrade phosphorus removal in small wastewater treatment plants such as stabilization ponds and constructed wetlands. The main objective of this study was to develop a systemic modelling approach to describe changes in the hydraulic performances and internal hydrodynamics of steel slag filters under real dynamic operating conditions. The experimental retention time distribution curves (RTD curves) determined from tracer experiments performed at different times during the first year of operation of two field-scale steel slag filters were analyzed through a three stage process. First, a statistical analysis of the RTD curves was performed to determine statistical parameters of the retention time distribution. Second, classical tanks in series (TIS) and plug flow with dispersion (PFD) models were used to obtain a first evaluation of the dispersion and mixing regime. Finally, a multi-flow path TIS model, based on the assumption of several flow paths with different hydraulic properties, is proposed to accurately describe the internal hydrodynamics. Overall, the results of this study indicate that higher CaO content, round shape, and larger grain size distribution of steel slag may promote plug-like flow rather than dispersion. The results of the multi-flow path TIS model suggest that the internal hydrodynamics of steel slag filters can be primarily described by two main flow paths: (i) a faster main flow path showing higher plug flow, followed by (ii) a slower secondary flow path showing higher dispersion. The results also showed that internal hydrodynamics may change over time as a consequence of physical-chemical phenomena occurring in the filter, including accumulation of precipitates, slag hydration and carbonation, and particle segregation.


Subject(s)
Industrial Waste , Steel , Wastewater , Filtration , Hydrodynamics , Phosphorus
4.
Water Sci Technol ; 76(1-2): 124-133, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28708617

ABSTRACT

French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m2/P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter® is one of the solutions developed in France by Epur Nature. Biho-Filter® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO3-N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.


Subject(s)
Filtration/methods , Nitrogen/chemistry , Wastewater/chemistry , Water Purification/methods , Biological Oxygen Demand Analysis , Denitrification , Filtration/instrumentation , France , Nitrification , Waste Disposal, Fluid , Water Purification/instrumentation , Wetlands
5.
Environ Sci Technol ; 47(1): 549-56, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23198779

ABSTRACT

Electric arc furnace steel slag (EAF-slag) and basic oxygen furnace steel slag (BOF-slag) were used as filter substrates in two horizontal subsurface flow filters (6 m(3) each) designed to remove phosphorus (P) from the effluent of a constructed wetland. The influences of slag composition, void hydraulic retention time (HRTv), temperature, and wastewater quality on treatment performances were studied. Over a period of almost two years of operation, the filter filled with EAF-slag removed 37% of the inlet total P, whereas the filter filled with BOF-slag removed 62% of the inlet total P. P removal occurred predominantly via CaO-slag dissolution followed by Ca phosphate precipitation. P removal efficiencies improved with increasing temperature and HRTv, most probably because this affected the rates of CaO-slag dissolution and Ca phosphate precipitation. It was observed that long HRTv (>3 days) can cause high pH in the effluents (>9) as a result of excessive CaO-slag dissolution. However, at shorter HRTv (1-2 days), pH values were elevated only during the first five weeks and then stabilized below a pH of 9. The kinetics of P removal were investigated employing a first-order equation, and a model for filter design was proposed.


Subject(s)
Industrial Waste , Phosphorus/chemistry , Steel/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Filtration/methods , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...