Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34833286

ABSTRACT

Today, the synthesis of biocompatible and bioresorbable composite materials such as "polymer matrix-mineral constituent," which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts-ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing.

2.
ACS Appl Mater Interfaces ; 9(39): 34325-34336, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28895718

ABSTRACT

Uniaxial tension accompanied by the orientation and crystallization of polymer chains is one of the powerful methods for the improvement of mechanical properties. Crystallization of amorphous isotropic polylactide (PLA) at room temperature is studied for the first time during the drawing of films in the presence of liquid adsorption-active media (ethanol, water-ethanol mixtures, and n-heptane) by the solvent crazing mechanism. The crystalline structure arises only under simultaneous actions of a liquid medium and a tensile stress and does not depend on the nature of the environment. The degree of polymer crystallinity increases nearly linearly with the growth in the fraction of the fibrillar material and reaches a maximum value of 42-45%. It has been stated that polymer crystallization happens in crazes involving nanofibrils with a diameter of about 10-20 nm without affecting the bulk polymer parts. Wide-angle X-ray scattering has been used to confirm that the crazing-induced crystallization is accompanied by the formation of the α'-crystalline phase with crystallite sizes (X-ray coherent scattering region) of 3-5 nm, depending on the nature of the liquid medium. After stretching in liquid media to a high tensile strain, the strength of a PLA film has increased to 200 MPa.

3.
J Phys Chem B ; 109(34): 16278-83, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16853069

ABSTRACT

During this study the formation and growth of silver chloride crystals in crazed porous polymeric matrixes of poly(ethylene terephthalate) (PET) and polypropylene (PP) were under investigation. The rate of formation and dispersity and the way AgCl particles aggregate in porous polymers were shown to be dependent on the effective volume porosity, pore dimension, and physical state of the polymer. Methods of the determination of diffusion and distribution constants for low-molecular substances in porous polymers were suggested, and a mechanism of silver chloride crystallization in porous medium was proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...