Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36594816

ABSTRACT

DNA origami has taken a leading position in organizing materials at the nanoscale for various applications such as manipulation of light by exploiting plasmonic nanoparticles. We here present the arrangement of gold nanorods in a plasmonic nanoantenna dimer enabling up to 1600-fold fluorescence enhancement of a conventional near-infrared (NIR) dye positioned at the plasmonic hotspot between the nanorods. Transmission electron microscopy, dark-field spectroscopy, and fluorescence analysis together with numerical simulations give us insights on the heterogeneity of the observed enhancement values. The size of our hotspot region is ∼12 nm, granted by using the recently introduced design of NAnoantenna with Cleared HotSpot (NACHOS), which provides enough space for placing of tailored bioassays. Additionally, the possibility to synthesize nanoantennas in solution might allow for production upscaling.

2.
iScience ; 24(9): 103072, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34568793

ABSTRACT

DNA nanotechnology offers new biosensing approaches by templating different sensor and transducer components. Here, we combine DNA origami nanoantennas with label-free antibody detection by incorporating a nanoswitch in the plasmonic hotspot of the nanoantenna. The nanoswitch contains two antigens that are displaced by antibody binding, thereby eliciting a fluorescent signal. Single-antibody detection is demonstrated with a DNA origami integrated anti-digoxigenin antibody nanoswitch. In combination with the nanoantenna, the signal generated by the antibody is additionally amplified. This allows the detection of single antibodies on a portable smartphone microscope. Overall, fluorescence-enhanced antibody detection in DNA origami nanoantennas shows that fluorescence-enhanced biosensing can be expanded beyond the scope of the nucleic acids realm.

3.
Acc Chem Res ; 54(17): 3338-3348, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34435769

ABSTRACT

The possibility to increase fluorescence by plasmonic effects in the near-field of metal nanostructures was recognized more than half a century ago. A major challenge, however, was to use this effect because placing single quantum emitters in the nanoscale plasmonic hotspot remained unsolved for a long time. This not only presents a chemical problem but also requires the nanostructure itself to be coaligned with the polarization of the excitation light. Additional difficulties arise from the complex distance dependence of fluorescence emission: in contrast to other surface-enhanced spectroscopies (such as Raman spectroscopy), the emitter should not be placed as close as possible to the metallic nanostructure but rather needs to be at an optimal distance on the order of a few nanometers to avoid undesired quenching effects.Our group addressed these challenges almost a decade ago by exploiting the unique positioning ability of DNA nanotechnology and reported the first self-assembled DNA origami nanoantennas. This Account summarizes our work spanning from this first proof-of-principle study to recent advances in utilizing DNA origami nanoantennas for single DNA molecule detection on a portable smartphone microscope.We summarize different aspects of DNA origami nanoantennas that are essential for achieving strong fluorescence enhancement and discuss how single-molecule fluorescence studies helped us to gain a better understanding of the interplay between fluorophores and plasmonic hotspots. Practical aspects of preparing the DNA origami nanoantennas and extending their utility are also discussed.Fluorescence enhancement in DNA origami nanoantennas is especially exciting for signal amplification in molecular diagnostic assays or in single-molecule biophysics, which could strongly benefit from higher time resolution. Additionally, biophysics can greatly profit from the ultrasmall effective detection volumes provided by DNA nanoantennas that allow single-molecule detection at drastically elevated concentrations as is required, e.g., in single-molecule DNA sequencing approaches.Finally, we describe our most recent progress in developing DNA NanoAntennas with Cleared HOtSpots (NACHOS) that are fully compatible with biomolecular assays. The developed DNA origami nanoantennas have proven robustness and remain functional after months of storage. As an example, we demonstrated for the first time the single-molecule detection of DNA specific to antibiotic-resistant bacteria on a portable and battery-driven smartphone microscope enabled by DNA origami nanoantennas. These recent developments mark a perfect moment to summarize the principles and the synthesis of DNA origami nanoantennas and give an outlook of new exciting directions toward using different nanomaterials for the construction of nanoantennas as well as for their emerging applications.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Fluorescence , Gold/chemistry , Nanotechnology/methods
4.
Nat Commun ; 12(1): 950, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574261

ABSTRACT

The advent of highly sensitive photodetectors and the development of photostabilization strategies made detecting the fluorescence of single molecules a routine task in many labs around the world. However, to this day, this process requires cost-intensive optical instruments due to the truly nanoscopic signal of a single emitter. Simplifying single-molecule detection would enable many exciting applications, e.g., in point-of-care diagnostic settings, where costly equipment would be prohibitive. Here, we introduce addressable NanoAntennas with Cleared HOtSpots (NACHOS) that are scaffolded by DNA origami nanostructures and can be specifically tailored for the incorporation of bioassays. Single emitters placed in NACHOS emit up to 461-fold (average of 89 ± 7-fold) brighter enabling their detection with a customary smartphone camera and an 8-US-dollar objective lens. To prove the applicability of our system, we built a portable, battery-powered smartphone microscope and successfully carried out an exemplary single-molecule detection assay for DNA specific to antibiotic-resistant Klebsiella pneumonia on the road.


Subject(s)
DNA/chemistry , Microscopy , Nanotechnology , Smartphone , Drug Resistance, Bacterial , Fluorescence , Humans , Klebsiella pneumoniae/drug effects , Male , Nanostructures , Point-of-Care Testing , Serum/chemistry
5.
Methods Appl Fluoresc ; 8(2): 024003, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31931486

ABSTRACT

Fluorescent dyes used for single-molecule spectroscopy can undergo millions of excitation-emission cycles before photobleaching. Due to the upconcentration of light in a plasmonic hotspot, the conditions for fluorescent dyes are even more demanding in DNA origami nanoantennas. Here, we briefly review the current state of fluorophore stabilization for single-molecule imaging and reveal additional factors relevant in the context of plasmonic fluorescence enhancement. We show that despite the improved photostability of single-molecule fluorophores by DNA origami nanoantennas, their performance in the intense electric fields in plasmonic hotspots is still limited by the underlying photophysical processes, such as formation of dim states and photoisomerization. These photophysical processes limit the photon count rates, increase heterogeneity and aggravate quantification of fluorescence enhancement factors. These factors also reduce the time resolution that can be achieved in biophysical single-molecule experiments. Finally, we show how the photophysics of a DNA hairpin assay with a fluorophore-quencher pair can be influenced by plasmonic DNA origami nanoantennas leading to implications for their use in fluorescence-based diagnostic assays. Especially, we show that such assays can produce false positive results by premature photobleaching of the dark quencher.


Subject(s)
DNA/chemistry , Ionophores/chemistry , Microscopy, Fluorescence/methods , Nanotechnology/methods , Humans
6.
J Mater Chem B ; 7(34): 5199-5210, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31364614

ABSTRACT

Uncontrolled release of encapsulated drugs and contrast agents from biodegradable polymer nanoparticles (NPs) is a central problem in drug delivery and bioimaging. In particular, it concerns polymeric NPs prepared by nanoprecipitation, where this release (so-called burst release) can be very significant, leading to side effects and/or bioimaging artifacts. Here, we systematically studied the effect of the chemical structure of cargo molecules, BODIPY dye derivatives, on their capacity to be loaded into ∼50 nm PLGA NPs without leakage in biological media. Absorption and fluorescence spectroscopy suggested that all the dyes, except the most polar BODIPY derivative, formed blended structures with polymer NPs. Fluorescence correlation spectroscopy of dye-loaded NPs in the presence of serum proteins revealed that only the most hydrophobic BODIPY dyes, bearing one octadecyl chain or two octyl chains, remain inside the NPs, while all other derivatives are released into the serum medium. The time-lapse absorption and fluorescence studies confirmed this result, suggesting the release kinetics for the leaky NPs on the time scale of hours. Fluorescence microscopy of living cells incubated with BODIPY-loaded NPs showed that most of them exhibit strong dye leakage observed as a homogeneous distribution of fluorescence all over the cytoplasm. Importantly, NPs loaded with the most hydrophobic dyes exhibited high stability showing a dotted pattern in the perinuclear region, typical for endosomes and lysosomes. Our results highlight the significance of the cargo hydrophobicity for efficient encapsulation inside polymeric NPs prepared by nanoprecipitation, which enables designing stable cargo-loaded nanomaterials for bioimaging and drug delivery.


Subject(s)
Boron Compounds/chemistry , Drug Liberation , Fluorescent Dyes/chemistry , Boron Compounds/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Fluorescent Dyes/administration & dosage , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Fluorescence/methods , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Spectrometry, Fluorescence/methods
7.
Anal Chem ; 89(23): 13000-13007, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29144729

ABSTRACT

Because of the limited signal-to-background ratio, molecular diagnostics requires molecular amplification of the target molecules or molecular signal amplification after target recognition. For direct molecular detection, we demonstrate a purely physical fluorescence enhancement process which can elevate the fluorescence signal of single fluorescent dyes by several orders of magnitude. To this end, DNA origami-based optical antennas with a height of around 125 nm are used, which utilize metallic nanoparticles to create a hotspot where fluorescence signals are enhanced by plasmonic effects. By equipping the hotspot with a molecular beacon-like structure, we combine the plasmonic signal enhancement with a specific signal generation, leading to an enhanced and therefore easy to detect signal only in the presence of the specific target nucleic acid. Exemplified with Zika virus detection, we show the applicability of this approach by detecting Zika-specific artificial DNA and RNA both in buffer and in heat-inactivated human blood serum. We show the sensitivity against small nucleotide variations of this approach, allowing the discrimination of closely related pathogens. Furthermore, we show how the modularity offered by DNA nanotechnology enables multiplexing by incorporating orthogonal fluorescent labels for the simultaneous detection of different sequences. The achieved signal enhancement will allow technically simplified signal detection, paving the way for single molecule-based point-of-care diagnosis.


Subject(s)
DNA/blood , Fluorescent Dyes/chemistry , RNA/analysis , Zika Virus/genetics , DNA/chemistry , DNA/genetics , Humans , Inverted Repeat Sequences , Luminescent Measurements/methods , Metal Nanoparticles/chemistry , Microscopy, Confocal/methods , Nucleic Acid Conformation , Nucleic Acid Hybridization , RNA/genetics , Silver/chemistry
8.
ACS Appl Mater Interfaces ; 9(49): 43030-43042, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29185702

ABSTRACT

Fluorescent nanoparticles (NPs) help to increase spatial and temporal resolution in bioimaging. Advanced microscopy techniques require very bright NPs that exhibit either stable emission for single-particle tracking or complete on/off switching (blinking) for super-resolution imaging. Here, ultrabright dye-loaded polymer NPs with controlled switching properties are developed. To this aim, the salt of a dye (rhodamine B octadecyl ester) with a hydrophobic counterion (fluorinated tetraphenylborate) is encapsulated at very high concentrations up to 30 wt % in NPs made of poly(lactic-co-glycolic acid) (PLGA), poly(methyl methacrylate) (PMMA), and polycaprolactone (PCL) through nanoprecipitation. The obtained 35 nm NPs are nearly 100 times brighter than quantum dots. The nature of the polymer is found to define the collective behavior of the encapsulated dyes so that NPs containing thousands of dyes exhibit either whole particle blinking, for PLGA, or stable emission, for PMMA and PCL. Fluorescence anisotropy measurements together with small-angle X-ray scattering experiments suggest that in less hydrophobic PLGA, dyes tend to cluster, whereas in more hydrophobic PMMA and PCL, dyes are dispersed within the matrix, thus altering the switching behavior of NPs. Experiments using a perylene diimide derivative show a similar effect of the polymer nature. The resulting fluorescent NPs are suitable for a wide range of imaging applications from tracking to super-resolution imaging. The findings on the organization of the load innside NPs will have impact on the development of materials for applications ranging from photovoltaics to drug delivery.

9.
Nat Photonics ; 11(10): 657-663, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28983324

ABSTRACT

Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky counterions, thus enabling ultrafast diffusion of excitation energy (≤30 fs) with minimal losses. Our 60-nm nanoparticles containing >10,000 rhodamine-based donor dyes can efficiently transfer energy to 1-2 acceptors resulting in an antenna effect of ~1,000. Therefore, single Cy5-based acceptors become 25-fold brighter than quantum dots QD655. This unprecedented amplification of the acceptor dye emission enables observation of single molecules at illumination powers (1-10 mW cm-2) that are >10,000-fold lower than typically required in single-molecule measurements. Finally, using a basic setup, which includes a 20X air objective and a sCMOS camera, we could detect single Cy5 molecules by simply shining divergent light on the sample at powers equivalent to sunlight.

10.
J Phys Chem Lett ; 6(12): 2259-64, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26266601

ABSTRACT

Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Förster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Förster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio ∼20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.


Subject(s)
Fluorescent Dyes/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Diffusion , Fluorescence Resonance Energy Transfer , Hydrophobic and Hydrophilic Interactions , Polylactic Acid-Polyglycolic Acid Copolymer , Rhodamines/chemistry , Tetraphenylborate/chemistry
11.
Nanoscale ; 6(21): 12934-42, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25233438

ABSTRACT

Fluorescent organic nanoparticles (NPs) are attractive alternatives to quantum dots due to their potential biodegradability. However, preparation of fluorescent organic NPs is challenging due to the problem of self-quenching of the encapsulated dyes. Moreover, the photostability of organic dyes is much lower than that of quantum dots. To address both problems, we studied encapsulation into biodegradable polymer PLGA NPs of perylene diimide (PDI) derivatives, which are among the most photostable dyes reported to date. Two PDIs were tested, one bearing bulky hydrophobic groups at the imides, while the other was substituted in both imide and bay regions (Lumogen Red). Encapsulation of the former resulted in aggregation, which was accompanied by the emission color change from green to red, some decrease in the fluorescence quantum yield and a significant drop in the photostability, unexpected for PDI dyes. In contrast, Lumogen Red showed nearly no aggregation inside polymer NPs and maintained high quantum yield and photostability. According to wide-field fluorescence microscopy with a 532 nm excitation laser, our 40 nm PLGA NPs loaded with 1 wt% Lumogen Red were >10-fold brighter than quantum dots (QD-585). These NPs were stable in biological media, including serum, and entered spontaneously into HeLa cells by endocytosis showing no sign of cytotoxicity. Due to excellent photostability, these nanoparticles could be considered as biodegradable substitutes of quantum dots in bioimaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...