Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Mol Med (Berl) ; 102(5): 667-677, 2024 05.
Article in English | MEDLINE | ID: mdl-38436713

ABSTRACT

C1q/TNF-related protein 3 (CTRP3) represents an adipokine with various metabolic and immune-regulatory functions. While circulating CTRP3 has been proposed as a potential biomarker for cardiovascular disease (CVD), current data on CTRP3 regarding coronary artery disease (CAD) remains partially contradictory. This study aimed to investigate CTRP3 levels in chronic and acute settings such as chronic coronary syndrome (CCS) and acute coronary syndrome (ACS). A total of 206 patients were classified into three groups: CCS (n = 64), ACS having a first acute event (ACS-1, n = 75), and ACS having a recurrent acute event (ACS-2, n = 67). The control group consisted of 49 healthy individuals. ELISA measurement in peripheral blood revealed decreased CTRP3 levels in all patient groups (p < 0.001) without significant differences between the groups. This effect was exclusively observed in male patients. Females generally exhibited significantly higher CTRP3 plasma levels than males. ROC curve analysis in male patients revealed a valuable predictive potency of plasma CTRP3 in order to identify CAD patients, with a proposed cut-off value of 51.25 ng/mL. The sensitivity and specificity of prediction by CTRP3 were congruent for the subgroups of CCS, ACS-1, and ACS-2 patients. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings, with male mice exhibiting higher circulating CTRP3 levels than females. We conclude that circulating CTRP3 levels are decreased in both male CCS and ACS patients. Therefore, CTRP3 might be useful as a biomarker for CAD but not for distinguishing an acute from a chronic setting. KEY MESSAGES: CTRP3 levels were found to be decreased in both male CCS and ACS patients compared to healthy controls. Plasma CTRP3 has a valuable predictive potency in order to identify CAD patients among men and is therefore proposed as a biomarker for CAD but not for distinguishing between acute and chronic settings. Regulation of circulating CTRP3 levels in murine models of cardiovascular pathophysiology was found to be partly opposite to the clinical findings in men.


Subject(s)
Biomarkers , Humans , Male , Female , Middle Aged , Aged , Biomarkers/blood , Animals , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/diagnosis , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Mice , Adipokines/blood , Chronic Disease , ROC Curve , Tumor Necrosis Factors/blood , Case-Control Studies
2.
Nat Commun ; 14(1): 1980, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031213

ABSTRACT

Activation of endothelial YAP/TAZ signaling is crucial for physiological and pathological angiogenesis. The mechanisms of endothelial YAP/TAZ regulation are, however, incompletely understood. Here we report that the protocadherin FAT1 acts as a critical upstream regulator of endothelial YAP/TAZ which limits the activity of these transcriptional cofactors during developmental and tumor angiogenesis by promoting their degradation. We show that loss of endothelial FAT1 results in increased endothelial cell proliferation in vitro and in various angiogenesis models in vivo. This effect is due to perturbed YAP/TAZ protein degradation, leading to increased YAP/TAZ protein levels and expression of canonical YAP/TAZ target genes. We identify the E3 ubiquitin ligase Mind Bomb-2 (MIB2) as a FAT1-interacting protein mediating FAT1-induced YAP/TAZ ubiquitination and degradation. Loss of MIB2 expression in endothelial cells in vitro and in vivo recapitulates the effects of FAT1 depletion and causes decreased YAP/TAZ degradation and increased YAP/TAZ signaling. Our data identify a pivotal mechanism of YAP/TAZ regulation involving FAT1 and its associated E3 ligase MIB2, which is essential for YAP/TAZ-dependent angiogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Trans-Activators , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Proteolysis , Trans-Activators/metabolism , Endothelial Cells/metabolism , YAP-Signaling Proteins , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Neovascularization, Pathologic/metabolism , Phosphoproteins/metabolism , Cadherins/metabolism
3.
Eur J Appl Physiol ; 123(3): 645-654, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36418750

ABSTRACT

BACKGROUND: Walking is the preferred therapy for peripheral arterial disease in early stage. An effect of walking exercise is the increase of blood flow and fluid shear stress, leading, triggered by arteriogenesis, to the formation of collateral blood vessels. Circulating micro-RNA may act as an important information transmitter in this process. We investigated the acute effects of a single bout of 1) aerobic walking with moderate intensity; and 2) anaerobic walking with vigorous intensity on miRNA parameters related to vascular collateral formation. METHODS: Ten (10) patients with peripheral arterial disease with claudication (age 72 ± 7 years) participated in this two-armed, randomized-balanced cross-over study. The intervention arms were single bouts of supervised walking training at (1) vigorous intensity on a treadmill up to volitional exhaustion and (2) moderate intensity with individual selected speed for a duration of 20 min. One week of washout was maintained between the arms. During each intervention, heart rate was continuously monitored. Acute effects on circulating miRNAs and lactate concentration were determined using pre- and post-intervention measurement comparisons. RESULTS: Vigorous-intensity walking resulted in a higher heart rate (125 ± 21 bpm) than the moderate-intensity intervention (88 ± 9 bpm) (p < 0.05). Lactate concentration was increased after vigorous-intensity walking (p = 0.005; 3.3 ± 1.2 mmol/l), but not after moderate exercising (p > 0.05; 1.7 ± 0.6 mmol/l). The circulating levels of miR-142-5p and miR-424-5p were up-regulated after moderate-intensity (p < 0.05), but not after vigorous-intensity training (p > 0.05). CONCLUSION: Moderate-intensity walking seems to be more feasible than vigorous exercises to induce changes of blood flow and endurance training-related miRNAs in patients with peripheral arterial disease. Our data thus indicates that effect mechanisms might follow an optimal rather than a maximal dose response relation. Steady state walking without the necessity to reach exhaustion seems to be better suited as stimulus.


Subject(s)
MicroRNAs , Peripheral Arterial Disease , Humans , Aged , Cross-Over Studies , Exercise Therapy , Exercise , Walking , Lactates
4.
Biomolecules ; 12(12)2022 12 03.
Article in English | MEDLINE | ID: mdl-36551238

ABSTRACT

The strong interaction of blood with the foreign surface of membrane oxygenators during ECMO therapy leads to adhesion of immune cells on the oxygenator membranes, which can be visualized in the form of image sequences using confocal laser scanning microscopy. The segmentation and quantification of these image sequences is a demanding task, but it is essential to understanding the significance of adhering cells during extracorporeal circulation. The aim of this work was to develop and test a deep learning-supported image processing tool (Deetect), suitable for the analysis of confocal image sequences of cell deposits on oxygenator membranes at certain predilection sites. Deetect was tested using confocal image sequences of stained (DAPI) blood cells that adhered to specific predilection sites (junctional warps and hollow fibers) of a phosphorylcholine-coated polymethylpentene membrane oxygenator after patient support (>24 h). Deetect comprises various functions to overcome difficulties that occur during quantification (segmentation, elimination of artifacts). To evaluate Deetects performance, images were counted and segmented manually as a reference and compared with the analysis by a traditional segmentation approach in Fiji and the newly developed tool. Deetect outperformed conventional segmentation in clustered areas. In sections where cell boundaries were difficult to distinguish visually, previously defined post-processing steps of Deetect were applied, resulting in a more objective approach for the resolution of these areas.


Subject(s)
Deep Learning , Extracorporeal Membrane Oxygenation , Humans , Oxygenators, Membrane , Equipment Design
5.
Eur J Appl Physiol ; 121(11): 3243-3255, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34435273

ABSTRACT

PURPOSE: Physical activity is associated with altered levels of circulating microRNAs (ci-miRNAs). Changes in miRNA expression have great potential to modulate biological pathways of skeletal muscle hypertrophy and metabolism. This study was designed to determine whether the profile of ci-miRNAs is altered after different approaches of endurance exercise. METHODS: Eighteen healthy volunteers (aged 24 ± 3 years) participated this three-arm, randomized-balanced crossover study. Each arm was a single bout of treadmill-based acute endurance exercise at (1) 100% of the individual anaerobic threshold (IANS), (2) at 80% of the IANS and (3) at 80% of the IANS with blood flow restriction (BFR). Load-associated outcomes (fatigue, feeling, heart rate, and exhaustion) as well as acute effects (circulating miRNA patterns and lactate) were determined. RESULTS: All training interventions increased the lactate concentration (LC) and heart rate (HR) (p < 0.001). The high-intensity intervention (HI) resulted in a higher LC than both lower intensity protocols (p < 0.001). The low-intensity blood flow restriction (LI-BFR) protocol led to a higher HR and higher LC than the low-intensity (LI) protocol without BFR (p = 0.037 and p = 0.003). The level of miR-142-5p and miR-197-3p were up-regulated in both interventions without BFR (p < 0.05). After LI exercise, the expression of miR-342-3p was up-regulated (p = 0.038). In LI-BFR, the level of miR-342-3p and miR-424-5p was confirmed to be up-regulated (p < 0.05). Three miRNAs and LC show a significant negative correlation (miR-99a-5p, p = 0.011, r = - 0.343/miR-199a-3p, p = 0.045, r = - 0.274/miR-125b-5p, p = 0.026, r = - 0.302). Two partial correlations (intervention partialized) showed a systematic impact of the type of exercise (LI-BFR vs. HI) (miR-99a-59: r = - 0.280/miR-199a-3p: r = - 0.293). CONCLUSION: MiRNA expression patterns differ according to type of activity. We concluded that not only the intensity of the exercise (LC) is decisive for the release of circulating miRNAs-as essential is the type of training and the oxygen supply.


Subject(s)
Biomarkers/blood , Exercise/physiology , MicroRNAs/blood , Blood Flow Restriction Therapy , Cross-Over Studies , Exercise Test , Female , Healthy Volunteers , Heart Rate/physiology , Humans , Lactates/blood , Male , Young Adult
6.
Dis Markers ; 2020: 9356738, 2020.
Article in English | MEDLINE | ID: mdl-32774516

ABSTRACT

BACKGROUND: Pediatric patients show an impressive capacity of cardiac regeneration. In contrast, severely deteriorated adult hearts do usually not recover. Since cardiac remodeling-involving the expression of fetal genes-is regarded as an adaptation to stress, we compared hearts of adult patients suffering from dilated cardiomyopathy (DCM) with remodeling of cultured neonatal (NRC) as well as adult (ARC) rat cardiomyocytes and the developing postnatal myocardium. METHODS: NRC and ARC were stimulated with serum and cardiac morphogens derived from DCM hearts. Protein synthesis (PS) as well as protein accumulation (PA) was measured, and cell survival was determined under ischemic conditions. Fetal markers were investigated by Western blot. Biomarkers of remodeling were analyzed in controls, DCM, and 2- to 6-month-old children with tetralogy of Fallot as well as in neonatal and adult rats by immunofluorescence. RESULTS: In NRC, serum and morphogens strongly stimulated PS and PA and the reestablishment of cell-cell contacts (CCC). In ARC, both stimulants increased PS and CCC, but PA was only elevated after serum stimulation. In contrast to serum, morphogen treatment resulted in the expression of fetal genes in ARC as determined by nonmuscle α-actinin-1 and α-actinin-4 expression (NM-actinins) and was associated with increased survival under ischemia. NM-actinins were present in cardiomyocytes of DCM in a cross-striated pattern reminiscent of sarcomeres as well as in extensions of the area of the intercalated disc (ID). NM-actinins are expressed in NRC and in the developing heart. Radixin staining revealed remodeling of the area of the ID in DCM almost identical to stimulated cultured ARC. CONCLUSIONS: Remodeling was similar in ARC and in cardiomyocytes of DCM suggesting evolutionary conserved mechanisms of regeneration. Despite activation of fetal genes, the atrophy of ARC indicates differences in their regenerative capacity from NRC. Cardiac-derived factors induced NM-actinin expression and increased survival of ischemic ARC while circulating molecules were less effective. Identification of these cardiac-derived factors and determination of their individual capacity to heal or damage are of particular importance for a biomarker-guided therapy in adult patients.


Subject(s)
Actinin/metabolism , Cardiomyopathy, Dilated/metabolism , Cytoskeletal Proteins/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/cytology , Tetralogy of Fallot/metabolism , Aged , Animals , Animals, Newborn , Cardiomyopathy, Dilated/blood , Cell Survival , Cells, Cultured , Female , Humans , Infant , Male , Middle Aged , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Tetralogy of Fallot/blood
7.
Cells ; 9(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316253

ABSTRACT

Beyond their role in pathogen recognition and the initiation of immune defense, Toll-like receptors (TLRs) are known to be involved in various vascular processes in health and disease. We investigated the potential of the lipopeptide and TLR2/6 ligand macrophage activating protein of 2-kDA (MALP-2) to promote blood flow recovery in mice. Hypercholesterolemic apolipoprotein E (Apoe)-deficient mice were subjected to microsurgical ligation of the femoral artery. MALP-2 significantly improved blood flow recovery at early time points (three and seven days), as assessed by repeated laser speckle imaging, and increased the growth of pre-existing collateral arteries in the upper hind limb, along with intimal endothelial cell proliferation in the collateral wall and pericollateral macrophage accumulation. In addition, MALP-2 increased capillary density in the lower hind limb. MALP-2 enhanced endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) release from endothelial cells and improved the experimental vasorelaxation of mesenteric arteries ex vivo. In vitro, MALP-2 led to the up-regulated expression of major endothelial adhesion molecules as well as their leukocyte integrin receptors and consequently enhanced the endothelial adhesion of leukocytes. Using the experimental approach of femoral artery ligation (FAL), we achieved promising results with MALP-2 to promote peripheral blood flow recovery by collateral artery growth.


Subject(s)
Blood Circulation/drug effects , Femoral Artery/drug effects , Lipopeptides/pharmacology , Macrophages/metabolism , Neovascularization, Physiologic/drug effects , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism , Animals , Apolipoproteins E/deficiency , Capillaries/drug effects , Capillaries/growth & development , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Femoral Artery/diagnostic imaging , Femoral Artery/pathology , Femoral Artery/surgery , Immunohistochemistry , Laser Speckle Contrast Imaging , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Phosphorylation , Vasodilation/drug effects
8.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316628

ABSTRACT

Arteriogenesis is a process by which a pre-existing arterioarterial anastomosis develops into a functional collateral network following an arterial occlusion. Alternatively activated macrophages polarized by IL10 have been described to promote collateral growth. This study investigates the effect of different levels of IL10 on hind-limb reperfusion and the distribution of perivascular macrophage activation types in mice after femoral artery ligation (FAL). IL10 and anti-IL10 were administered before FAL and the arteriogenic response was measured by Laser-Doppler-Imaging perioperatively, after 3, 7, and 14 d. Reperfusion recovery was accelerated when treated with IL10 and impaired with anti-IL10. Furthermore, symptoms of ischemia on ligated hind-limbs had the highest incidence after application of anti-IL10. Perivascular macrophages were immunohistologically phenotyped using CD163 and CD68 in adductor muscle segments. The proportion of alternatively activated macrophages (CD163+/CD68+) in relation to classically activated macrophages (CD163-/CD68+) observed was the highest when treated with IL10 and suppressed with anti-IL10. This study underlines the proarteriogenic response with increased levels of IL10 and demonstrates an in-vivo alteration of macrophage activation types in the perivascular bed of growing collaterals.


Subject(s)
Femoral Artery/injuries , Hindlimb/blood supply , Interleukin-10/pharmacology , Ischemia/diagnostic imaging , Macrophages/immunology , Animals , Antibodies/pharmacology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Polarity/drug effects , Disease Models, Animal , Hindlimb/immunology , Interleukin-10/blood , Ischemia/immunology , Macrophage Activation/drug effects , Macrophages/drug effects , Mice , Receptors, Cell Surface/metabolism , Reperfusion
9.
Arterioscler Thromb Vasc Biol ; 40(5): e126-e137, 2020 05.
Article in English | MEDLINE | ID: mdl-32188276

ABSTRACT

OBJECTIVE: Arteriogenesis, describing the process of collateral artery growth, is activated by fluid shear stress (FSS). Since this vascular mechanotransduction may involve microRNAs (miRNAs), we investigated the FSS-induced expression of vascular cell miRNAs and their functional impact on collateral artery growth during arteriogenesis. Approach and Results: To this end, rats underwent femoral artery ligation and arteriovenous anastomosis to increase collateral blood flow to maximize FSS and trigger collateral vessel remodeling. Five days after surgery, a miRNA expression profile was obtained from collateral tissue, and upregulation of 4 miRNAs (miR-24-3p, miR-143-3p, miR-146a-5p, and miR-195-5p) was verified by quantitative polymerase chain reaction. Knockdown of miRNAs at the same time of the surgery in an in vivo mouse ligation and recovery model demonstrated that inhibition of miR-143-3p only severely impaired blood flow recovery due to decreased arteriogenesis. In situ hybridization revealed distinct localization of miR-143-3p in the vessel wall of growing collateral arteries predominantly in smooth muscle cells. To investigate the mechanotransduction of FSS leading to the increased miR-143-3p expression, cultured endothelial cells were exposed to FSS. This provoked the expression and release of TGF-ß (transforming growth factor-ß), which increased the expression of miR-143-3p in smooth muscle cells in the presence of SRF (serum response factor) and myocardin. COL5A2 (collagen type V-α2)-a target gene of miR-143-3p predicted by in silico analysis-was found to be downregulated in growing collaterals. CONCLUSIONS: These results indicate that the increased miR-143-3p expression in response to FSS might contribute to the reorganization of the extracellular matrix, which is important for vascular remodeling processes, by inhibiting collagen V-α2 biosynthesis.


Subject(s)
Collagen Type V/metabolism , Collateral Circulation , Femoral Artery/surgery , Mechanotransduction, Cellular , MicroRNAs/metabolism , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Animals , Arteriovenous Shunt, Surgical , Blood Flow Velocity , Cells, Cultured , Collagen Type V/genetics , Femoral Artery/metabolism , Femoral Artery/physiopathology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ligation , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Myocytes, Smooth Muscle/metabolism , Rats, Sprague-Dawley , Regional Blood Flow , Stress, Mechanical
10.
Cells ; 9(2)2020 01 31.
Article in English | MEDLINE | ID: mdl-32024023

ABSTRACT

BACKGROUND: The vascular effects of training under blood flow restriction (BFR) in healthy persons can serve as a model for the exercise mechanism in lower extremity arterial disease (LEAD) patients. Both mechanisms are, inter alia, characterized by lower blood flow in the lower limbs. We aimed to describe and compare the underlying mechanism of exercise-induced effects of disease- and external application-BFR methods. METHODS: We completed a narrative focus review after systematic literature research. We included only studies on healthy participants or those with LEAD. Both male and female adults were considered eligible. The target intervention was exercise with a reduced blood flow due to disease or external application. RESULTS: We identified 416 publications. After the application of inclusion and exclusion criteria, 39 manuscripts were included in the vascular adaption part. Major mechanisms involving exercise-mediated benefits in treating LEAD included: inflammatory processes suppression, proinflammatory immune cells, improvement of endothelial function, remodeling of skeletal muscle, and additional vascularization (arteriogenesis). Mechanisms resulting from external BFR application included: increased release of anabolic growth factors, stimulated muscle protein synthesis, higher concentrations of heat shock proteins and nitric oxide synthase, lower levels in myostatin, and stimulation of S6K1. CONCLUSIONS: A main difference between the two comparators is the venous blood return, which is restricted in BFR but not in LEAD. Major similarities include the overall ischemic situation, the changes in microRNA (miRNA) expression, and the increased production of NOS with their associated arteriogenesis after training with BFR.


Subject(s)
Adaptation, Physiological , Arteries/growth & development , Arteries/physiology , Exercise , Organogenesis , Humans , Myostatin/metabolism , Regional Blood Flow
11.
Blood ; 134(17): 1469-1479, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31501155

ABSTRACT

Fluid shear stress in the vasculature is the driving force for natural bypass growth, a fundamental endogenous mechanism to counteract the detrimental consequences of vascular occlusive disease, such as stroke or myocardial infarction. This process, referred to as "arteriogenesis," relies on local recruitment of leukocytes, which supply growth factors to preexisting collateral arterioles enabling them to grow. Although several mechanosensing proteins have been identified, the series of mechanotransduction events resulting in local leukocyte recruitment is not understood. In a mouse model of arteriogenesis (femoral artery ligation), we found that endothelial cells release RNA in response to increased fluid shear stress and that administration of RNase inhibitor blocking plasma RNases improved perfusion recovery. In contrast, treatment with bovine pancreatic RNase A or human recombinant RNase1 interfered with leukocyte recruitment and collateral artery growth. Our results indicated that extracellular RNA (eRNA) regulated leukocyte recruitment by engaging vascular endothelial growth factor receptor 2 (VEGFR2), which was confirmed by intravital microscopic studies in a murine cremaster model of inflammation. Moreover, we found that release of von Willebrand factor (VWF) as a result of shear stress is dependent on VEGFR2. Blocking VEGFR2, RNase application, or VWF deficiency interfered with platelet-neutrophil aggregate formation, which is essential for initiating the inflammatory process in arteriogenesis. Taken together, the results show that eRNA is released from endothelial cells in response to shear stress. We demonstrate this extracellular nucleic acid as a critical mediator of mechanotransduction by inducing the liberation of VWF, thereby initiating the multistep inflammatory process responsible for arteriogenesis.


Subject(s)
Endothelial Cells/metabolism , Mechanotransduction, Cellular , Neovascularization, Physiologic , RNA/metabolism , Stress, Mechanical , Animals , Arteries/physiology , Cattle , Cells, Cultured , Endothelial Cells/cytology , Mice , Mice, Inbred C57BL
12.
Int J Mol Sci ; 20(16)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416228

ABSTRACT

Exercise is a treatment option in peripheral artery disease (PAD) patients to improve their clinical trajectory, at least in part induced by collateral growth. The ligation of the femoral artery (FAL) in mice is an established model to induce arteriogenesis. We intended to develop an animal model to stimulate collateral growth in mice through exercise. The training intensity assessment consisted of comparing two different training regimens in C57BL/6 mice, a treadmill implementing forced exercise and a free-to-access voluntary running wheel. The mice in the latter group covered a much greater distance than the former pre- and postoperatively. C57BL/6 mice and hypercholesterolemic ApoE-deficient (ApoE-/-) mice were subjected to FAL and had either access to a running wheel or were kept in motion-restricting cages (control) and hind limb perfusion was measured pre- and postoperatively at various times. Perfusion recovery in C57BL/6 mice was similar between the groups. In contrast, ApoE-/- mice showed significant differences between training and control 7 d postoperatively with a significant increase in pericollateral macrophages while the collateral diameter did not differ between training and control groups 21 d after surgery. ApoE-/- mice with running wheel training is a suitable model to simulate exercise induced collateral growth in PAD. This experimental set-up may provide a model for investigating molecular training effects.


Subject(s)
Disease Models, Animal , Neovascularization, Physiologic , Peripheral Arterial Disease/etiology , Physical Conditioning, Animal , Animals , Biomarkers , Diet, High-Fat , Femoral Artery/cytology , Femoral Artery/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/blood supply , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/pathology , Regional Blood Flow
13.
Int J Mol Sci ; 20(13)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269677

ABSTRACT

BACKGROUND: The effects of blood flow restriction (training) may serve as a model of peripheral artery disease. In both conditions, circulating micro RNAs (miRNAs) are suggested to play a crucial role during exercise-induced arteriogenesis. We aimed to determine whether the profile of circulating miRNAs is altered after acute resistance training during blood flow restriction (BFR) as compared with unrestricted low- and high-volume training, and we hypothesized that miRNA that are relevant for arteriogenesis are affected after resistance training. METHODS: Eighteen healthy volunteers (aged 25 ± 2 years) were enrolled in this three-arm, randomized-balanced crossover study. The arms were single bouts of leg flexion/extension resistance training at (1) 70% of the individual single-repetition maximum (1RM), (2) at 30% of the 1RM, and (3) at 30% of the 1RM with BFR (artificially applied by a cuff at 300 mm Hg). Before the first exercise intervention, the individual 1RM (N) and the blood flow velocity (m/s) used to validate the BFR application were determined. During each training intervention, load-associated outcomes (fatigue, heart rate, and exhaustion) were monitored. Acute effects (circulating miRNAs, lactate) were determined using pre-and post-intervention measurements. RESULTS: All training interventions increased lactate concentration and heart rate (p < 0.001). The high-intensity intervention (HI) resulted in a higher lactate concentration than both lower-intensity training protocols with BFR (LI-BFR) and without (LI) (LI, p = 0.003; 30% LI-BFR, p = 0.008). The level of miR-143-3p was down-regulated by LI-BFR, and miR-139-5p, miR-143-3p, miR-195-5p, miR-197-3p, miR-30a-5p, and miR-10b-5p were up-regulated after HI. The lactate concentration and miR-143-3p expression showed a significant positive linear correlation (p = 0.009, r = 0.52). A partial correlation (intervention partialized) showed a systematic impact of the type of training (LI-BFR vs. HI) on the association (r = 0.35 remaining after partialization of training type). CONCLUSIONS: The strong effects of LI-BFR and HI on lactate- and arteriogenesis-associated miRNA-143-3p in young and healthy athletes are consistent with an important role of this particular miRNA in metabolic processes during (here) artificial blood flow restriction. BFR may be able to mimic the occlusion of a larger artery which leads to increased collateral flow, and it may therefore serve as an external stimulus of arteriogenesis.


Subject(s)
Cell-Free Nucleic Acids/genetics , MicroRNAs/genetics , Resistance Training , Adult , Cross-Over Studies , Down-Regulation , Female , Humans , Male , Peripheral Arterial Disease/genetics , Regional Blood Flow , Up-Regulation , Young Adult
14.
FASEB J ; 33(4): 5457-5467, 2019 04.
Article in English | MEDLINE | ID: mdl-30702929

ABSTRACT

Tissue-resident mast cells (MCs) are well known for their role in inflammatory responses and allergic and anaphylactic reactions, but they also contribute to processes of arterial remodeling. Although ribosomes and cytosolic RNAs are located around secretory granules in mature MCs, their functional role in MC responses remains unexplored. Previous studies by our group characterized extracellular RNA (eRNA) as an inflammatory and pathogenetic factor in vitro and in vivo. In the present study, RNA-containing MCs and eRNA were located in close proximity to growing collateral arteries in vivo. In vitro, various agonists were found to induce the degranulation of MCs and the concomitant release of eRNA in association with microvesicles (MVs). The liberation of eRNA from MCs was abolished by MC stabilizers or by preventing the increase of intracellular Ca2+ in MCs. eRNA was found to be mainly contained inside MVs, as demonstrated by electron microscopy and immunocytochemistry. The exposure to and the uptake of MC-released MVs by cultured endothelial cells increased their expression of cytokines, such as monocyte chemoattractant protein or IL-6, in a dose- and time-dependent manner. These results indicate that RNA-containing MC-derived MVs are likely to be involved in inflammatory responses, relevant, for example, to processes of vascular remodeling.-Elsemüller, A.-K., Tomalla, V., Gärtner, U., Troidl, K., Jeratsch, S., Graumann, J., Baal, N., Hackstein, H., Lasch, M., Deindl, E., Preissner, K. T., Fischer, S. Characterization of mast cell-derived rRNA-containing microvesicles and their inflammatory impact on endothelial cells.


Subject(s)
Endothelial Cells/metabolism , Inflammation/metabolism , Mast Cells/metabolism , Microvessels/metabolism , RNA, Ribosomal/metabolism , Animals , Cell Degranulation/physiology , Cell Line , Cell-Derived Microparticles/metabolism , Cytokines/metabolism , Humans , Mice , Mice, Inbred C57BL , Secretory Vesicles/metabolism
15.
EBioMedicine ; 27: 237-246, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29233575

ABSTRACT

Midkine is a pleiotropic factor, which is involved in angiogenesis. However, its mode of action in this process is still ill defined. The function of midkine in arteriogenesis, the growth of natural bypasses from pre-existing collateral arteries, compensating for the loss of an occluded artery has never been investigated. Arteriogenesis is an inflammatory process, which relies on the proliferation of endothelial cells and smooth muscle cells. We show that midkine deficiency strikingly interferes with the proliferation of endothelial cells in arteriogenesis, thereby interfering with the process of collateral artery growth. We identified midkine to be responsible for increased plasma levels of vascular endothelial growth factor A (VEGFA), necessary and sufficient to promote endothelial cell proliferation in growing collaterals. Mechanistically, we demonstrate that leukocyte domiciled midkine mediates increased plasma levels of VEGFA relevant for upregulation of endothelial nitric oxide synthase 1 and 3, necessary for proper endothelial cell proliferation, and that non-leukocyte domiciled midkine additionally improves vasodilation. The data provided on the role of midkine in endothelial proliferation are likely to be relevant for both, the process of arteriogenesis and angiogenesis. Moreover, our data might help to estimate the therapeutic effect of clinically applied VEGFA in patients with vascular occlusive diseases.


Subject(s)
Femoral Artery/growth & development , Femoral Artery/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Nitric Oxide Synthase/metabolism , Organogenesis/drug effects , Vascular Endothelial Growth Factor A/metabolism , Animals , Biological Availability , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Femoral Artery/drug effects , Leukocytes/drug effects , Leukocytes/metabolism , Mice, Inbred C57BL , Midkine , Models, Biological , Nitroso Compounds/pharmacology
16.
PLoS One ; 12(12): e0190002, 2017.
Article in English | MEDLINE | ID: mdl-29261777

ABSTRACT

Self-extracellular RNA (eRNA), released from stressed or injured cells upon various pathological situations such as ischemia-reperfusion-injury, has been shown to act as an alarmin by inducing procoagulatory and proinflammatory responses. In particular, M1-polarization of macrophages by eRNA resulted in the expression and release of a variety of cytokines, including tumor necrosis factor (TNF)-α or interleukin-6 (IL-6). The present study now investigates in which way self-eRNA may influence the response of macrophages towards various Toll-like receptor (TLR)-agonists. Isolated agonists of TLR2 (Pam2CSK4), TLR3 (PolyIC), TLR4 (LPS), or TLR7 (R848) induced the release of TNF-α in a concentration-dependent manner in murine macrophages, differentiated from bone marrow-derived stem cells by mouse colony stimulating factor. Here, the presence of eRNA shifted the dose-response curve for Pam2CSK4 (Pam) considerably to the left, indicating that eRNA synergistically enhanced the cytokine liberation from macrophages even at very low Pam-levels. The synergistic activation of TLR2 by eRNA/Pam was duplicated by other TLR2-agonists such as FSL-1 or Pam3CSK4. In contrast, for TLR4-agonists such as LPS a synergistic effect of eRNA was much weaker, and was not existent for TLR3-, or TLR7-agonists. The synergistic eRNA/Pam action was dependent on the NFκB-signaling pathway as well as on p38MAP- and MEK1/ERK-kinases and was prevented by predigestion of eRNA with RNase1 or by antibodies against TLR2. Thus, the presence of self-eRNA as alarming molecule sensitizes innate immune responses towards pathogen-associated molecular patterns (PAMPs) in a synergistic way and may thereby contribute to the differentiated outcome of inflammatory responses.


Subject(s)
Extracellular Space/metabolism , Inflammation/metabolism , RNA/metabolism , Signal Transduction , Animals , Cytokines/metabolism , Diglycerides/pharmacology , Lipopeptides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Oligopeptides/pharmacology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Signal Transduction/drug effects , Time Factors , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
17.
Cell Rep ; 16(8): 2197-2207, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27524614

ABSTRACT

The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit(+)/CXCR-4(+) cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases.


Subject(s)
Endothelial Cells/metabolism , Mast Cells/metabolism , Mechanotransduction, Cellular , Neovascularization, Physiologic/genetics , Neutrophils/metabolism , Vascular Remodeling/genetics , Animals , Arteries/metabolism , Arteries/pathology , Blood Platelets/cytology , Blood Platelets/metabolism , Cell Proliferation , Endothelial Cells/cytology , Gene Expression Regulation , Hindlimb/blood supply , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mast Cells/cytology , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Monocytes/cytology , Monocytes/metabolism , NADPH Oxidase 2/genetics , NADPH Oxidase 2/metabolism , Neutrophils/cytology , Platelet Glycoprotein GPIb-IX Complex/genetics , Platelet Glycoprotein GPIb-IX Complex/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Reactive Oxygen Species/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Stress, Mechanical , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
18.
Lab Invest ; 96(8): 830-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27239731

ABSTRACT

l-Arginine is the common substrate for nitric oxide synthases (NOS) and arginase. Whereas the contribution of NOS to collateral artery growth (arteriogenesis) has been demonstrated, the functional role of arginase remains to be elucidated and was topic of the present study. Arteriogenesis was induced in mice by ligation of the femoral artery. Laser Doppler perfusion measurements demonstrated a significant reduction in arteriogenesis in mice treated with the arginase inhibitor nor-NOHA (N(ω)-hydroxy-nor-arginine). Accompanying in vitro results on murine primary arterial endothelial cells and smooth muscle cells revealed that nor-NOHA treatment interfered with cell proliferation and resulted in increased nitrate/nitrite levels, indicative for increased NO production. Immuno-histological analyses on tissue samples demonstrated that nor-NOHA administration caused a significant reduction in M2 macrophage accumulation around growing collateral arteries. Gene expression studies on isolated growing collaterals evidenced that nor-NOHA treatment abolished the differential expression of Icam1 (intercellular adhesion molecule 1). From our data we conclude that arginase activity is essential for arteriogenesis by promoting perivascular M2 macrophage accumulation as well as arterial cell proliferation.


Subject(s)
Arginase/antagonists & inhibitors , Collateral Circulation/drug effects , Collateral Circulation/physiology , Macrophages/drug effects , Neovascularization, Physiologic/drug effects , Animals , Arginase/physiology , Arginine/analogs & derivatives , Arginine/pharmacology , Arteries/drug effects , Arteries/growth & development , Arteries/physiology , Cell Proliferation/drug effects , Cells, Cultured , Collateral Circulation/genetics , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Intercellular Adhesion Molecule-1/genetics , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Nitric Oxide/biosynthesis
19.
J Am Heart Assoc ; 5(5)2016 04 27.
Article in English | MEDLINE | ID: mdl-27121849

ABSTRACT

BACKGROUND: Cell damage, tissue and vascular injury are associated with the exposure and release of intracellular components such as RNA, which promote inflammatory reactions and thrombosis. Based on the counteracting anti-inflammatory and cardioprotective functions of ribonuclease A (RNase A) in this context, its role in an experimental model of heart transplantation in rats was studied. METHODS AND RESULTS: Inbred BN/OrlRj rat cardiac allografts were heterotopically transplanted into inbred LEW/OrlRj rats. Recipients were intravenously treated every other day with saline or bovine pancreatic RNase A (50 µg/kg). Toxic side effects were not found (macroscopically and histologically). Heart tissue flow cytometry and quantitative morphological analyses of explanted hearts at postoperative day 1 or postoperative day 4 showed reduced leukocyte infiltration, edema, and thrombus formation in RNase A-treated rats. In allogeneic mixed lymphocyte reactions, RNase A decreased the proliferation of effector T cells. RNase A treatment of rats resulted in prolonged median graft survival up to 10.5 days (interquartile range 1.8) compared to 6.5 days (interquartile range 1.0) in saline treatment (P=0.001). Treatment of rats with a new generated (recombinant) human pancreatic RNase 1 prolonged median graft survival similarly, unlike treatment with (recombinant) inactive human RNase 1 (each 50 µg/kg IV every other day, 11.0 days, interquartile range 0.3, versus 8.0 days, interquartile range 0.5, P=0.007). CONCLUSIONS: Upon heart transplantation, RNase administration appears to present a promising and safe drug to counteract ischemia/reperfusion injury and graft rejection. Furthermore, RNase treatment may be considered in situations of critical reperfusion after percutaneous coronary interventions or in cardiac surgery using the heart-lung machine.


Subject(s)
Graft Survival/drug effects , Heart Transplantation , Heart/drug effects , Myocardial Reperfusion Injury/immunology , Myocardium/pathology , Ribonuclease, Pancreatic/pharmacology , Animals , Cattle , Cell Proliferation/drug effects , Edema/immunology , Edema/pathology , Humans , Male , Myocardial Reperfusion Injury/pathology , Rats , Rats, Inbred BN , Rats, Inbred Lew , T-Lymphocytes/drug effects , Thrombosis/immunology , Thrombosis/pathology , Transplantation, Homologous
20.
Arterioscler Thromb Vasc Biol ; 36(1): 37-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26603156

ABSTRACT

OBJECTIVES: Monocyte/macrophage recruitment and activation at vascular predilection sites plays a central role in the pathogenesis of atherosclerosis. Heterotrimeric G proteins of the G12/13 family have been implicated in the control of migration and inflammatory gene expression, but their function in myeloid cells, especially during atherogenesis, is unknown. APPROACH AND RESULTS: Mice with myeloid-specific deficiency for G12/13 show reduced atherosclerosis with a clear shift to anti-inflammatory gene expression in aortal macrophages. These changes are because of neither altered monocyte/macrophage migration nor reduced activation of inflammatory gene expression; on the contrary, G12/13-deficient macrophages show an increased nuclear factor-κB-dependent gene expression in the resting state. Chronically increased inflammatory gene expression in resident peritoneal macrophages results in myeloid-specific G12/13-deficient mice in an altered peritoneal micromilieu with secondary expansion of peritoneal B1 cells. Titers of B1-derived atheroprotective antibodies are increased, and adoptive transfer of peritoneal cells from mutant mice conveys atheroprotection to wild-type mice. With respect to the mechanism of G12/13-mediated transcriptional control, we identify an autocrine feedback loop that suppresses nuclear factor-κB-dependent gene expression through a signaling cascade involving sphingosine 1-phosphate receptor subtype 2, G12/13, and RhoA. CONCLUSIONS: Together, these data show that selective inhibition of G12/13 signaling in macrophages can augment atheroprotective B-cell populations and ameliorate atherosclerosis.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , B-Lymphocyte Subsets/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Macrophage Activation , Macrophages, Peritoneal/metabolism , Receptors, Lysosphingolipid/metabolism , Adoptive Transfer , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Autocrine Communication , B-Lymphocyte Subsets/immunology , Cells, Cultured , Disease Models, Animal , Feedback, Physiological , GTP-Binding Protein alpha Subunits, G12-G13/deficiency , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Expression Regulation , Inflammation Mediators/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/transplantation , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Lysosphingolipid/deficiency , Receptors, Lysosphingolipid/genetics , Signal Transduction , Sphingosine-1-Phosphate Receptors , Transcription, Genetic , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...