Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Waste Manag Res ; 40(11): 1571-1593, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35796574

ABSTRACT

Volatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels. Several challenges must be faced for full-scale implementation, including process optimization to achieve high and stable yields, the development of efficient techniques for selective recovery and the cost-effectiveness of the whole process. This review aims to critically discuss and statistically analyze the existing relationships between process performance and the main variables of concern. Moreover, opportunities, current challenges and perspectives of a FW-based and fermentation-centred biorefinery layout are discussed.


Subject(s)
Food , Refuse Disposal , Bioreactors , Fatty Acids, Volatile , Fermentation , Refuse Disposal/methods
2.
Waste Manag ; 33(11): 2520-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23791423

ABSTRACT

GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from -290kg CO2 e (glass) to -19111kg CO2 e (metals - Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.


Subject(s)
Carbon Cycle , Greenhouse Effect/prevention & control , Recycling , Soil , South Africa
3.
Waste Manag Res ; 31(3): 295-305, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23377284

ABSTRACT

Empirical research shows that good waste management practice in South Africa is not always under the volitional control of those tasked with its implementation. While intention to act may exist, external factors, within the distal and proximal context, create barriers to waste behaviour. In addition, these barriers differ for respondents in municipalities, private industry and private waste companies. The main barriers to implementing good waste management practice experienced by respondents in municipalities included insufficient funding for waste management and resultant lack of resources; insufficient waste knowledge; political interference in decision-making; a slow decision-making process; lack of perceived authority to act by waste staff; and a low priority afforded to waste. Barriers experienced by respondents in private industry included insufficient funding for waste and the resultant lack of resources; insufficient waste knowledge; and government bureaucracy. Whereas, barriers experienced in private waste companies included increasing costs; government bureaucracy; global markets; and availability of waste for recycling. The results suggest that respondents in public and private waste organizations are subject to different structural forces that shape, enable and constrain waste behaviour.


Subject(s)
Cities/economics , Waste Management/methods , Humans , Local Government , Private Sector , Recycling , South Africa , Waste Management/economics
4.
Waste Manag ; 33(4): 1013-26, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23312780

ABSTRACT

Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm(3) (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO2 equivalents (CO2 e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from -145 to 1016 kg CO2 e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO2 e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.


Subject(s)
Air Pollution/statistics & numerical data , Waste Management/statistics & numerical data , Greenhouse Effect , Models, Theoretical , South Africa , Transportation
5.
Waste Manag ; 32(11): 2163-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22748916

ABSTRACT

Combining the process of learning and the theory of planned behaviour into a new theoretical framework provides an opportunity to explore the impact of data on waste behaviour, and consequently on waste management, in South Africa. Fitting the data to the theoretical framework shows that there are only three constructs which have a significant effect on behaviour, viz experience, knowledge, and perceived behavioural control (PBC). Knowledge has a significant influence on all three of the antecedents to behavioural intention (attitude, subjective norm and PBC). However, it is PBC, and not intention, that has the greatest influence on waste behaviour. While respondents may have an intention to act, this intention does not always manifest as actual waste behaviour, suggesting limited volitional control. The theoretical framework accounts for 53.7% of the variance in behaviour, suggesting significant external influences on behaviour not accounted for in the framework. While the theoretical model remains the same, respondents in public and private organisations represent two statistically significant sub-groups in the data set. The theoretical framework accounts for 47.8% of the variance in behaviour of respondents in public waste organisations and 57.6% of the variance in behaviour of respondents in private organisations. The results suggest that respondents in public and private waste organisations are subject to different structural forces that shape knowledge, intention, and resultant waste behaviour.


Subject(s)
Behavior , Information Systems , Waste Management , Attitude , Humans , Knowledge , Models, Theoretical , Psychological Theory , South Africa
6.
Waste Manag ; 32(11): 2154-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22640802

ABSTRACT

An empirical study was undertaken with 31 organisations submitting data to the South African Waste Information System (SAWIS) in order to explore the relationship between data and resultant waste knowledge generated through a process of learning. The results show that of the three constructs of knowledge (experience, data/information, and theory), experience has the greatest influence on building waste knowledge, nearly twice that of data/information and three times that of theory. Together the three constructs account for 54.1% of the variance in knowledge. Respondents from municipalities and private waste organisations reflect two distinct sub-groups in the data set. While the theoretical model remains the same for the two sub-groups, the way in which knowledge is constructed, and the variance in knowledge explained by the model, differs for the two. A mixed methods research design, combining quantitative statistical analysis and rich qualitative data, contributes to a comprehensive interpretation of the role of waste data in building knowledge in South Africa. While waste data has a minor influence on building knowledge, respondents acknowledge that waste data does have a positive impact on the way their organisations manage waste. However, it is not the data, but rather the resultant waste knowledge and raised level of awareness that causes the operational response. Experience is obtained predominantly through learning from others. Respondents in municipalities, emphasised learning from consultants, landfill site contractors, and colleagues in city-twinning programmes, while respondents in private waste companies, emphasised learning from experienced, senior colleagues.


Subject(s)
Information Systems , Waste Management/methods , Data Interpretation, Statistical , Humans , Knowledge , South Africa
7.
Waste Manag ; 31(7): 1585-96, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21450453

ABSTRACT

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.


Subject(s)
Gases/analysis , Greenhouse Effect , Waste Management/methods , Africa , Cities , Developing Countries , Methane/analysis , Waste Management/economics
8.
Waste Manag ; 30(11): 2347-53, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20646920

ABSTRACT

This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.


Subject(s)
Environmental Monitoring/methods , Methane/analysis , Carbon Dioxide/chemistry , Cities , Conservation of Natural Resources , Environment , Gases , Greenhouse Effect/prevention & control , Refuse Disposal/methods , South Africa , Waste Management/methods
9.
J Hazard Mater ; 181(1-3): 1163-9, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20554377

ABSTRACT

In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l(-1). Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.


Subject(s)
Biodegradation, Environmental , Nitrogen/metabolism , Pinus , Plant Bark , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Biofilms , Soil , Soil Microbiology
10.
Waste Manag ; 30(8-9): 1457-63, 2010.
Article in English | MEDLINE | ID: mdl-20116993

ABSTRACT

The degradation of organic compounds found in municipal solid waste (MSW) under the anaerobic landfill conditions produces gas and liquid emissions that can protract well into the landfill after-care period. The European Landfill Directives regulate the amount and nature of the organic compounds disposed into landfills. In South Africa and other developing countries, MSW is still landfilled without any kind of pre-treatment. This paper presents a pilot project of mechanical biological waste treatment (MBWT) in South Africa implemented at municipal level in the city of Durban using passively aerated open windrows. Based on case studies from Austria, England and South Africa, a waste minimisation model which can facilitate full-scale implementation of MBWT in developing countries is presented. MSW was treated in open windrows for 8 weeks. Composting temperature reached a maximum of 65 degrees C in less than 10 days. The results of eluate tests on waste samples from the windrows at the end of composting show a reduction of BOD(5) and BOD(5)/COD ratios equal to 35.7% and 16.7%, respectively. The percent waste composition of the treated MSW was 28.3% putrescibles, 17.4% garden refuse, 13.3% plastic, 12.4% fabrics, 12% paper and other elements. The waste composition shows that more than 40% of un-treated organic material and also more than 40% non-biodegradable and recyclable materials are still landfilled without any form of biological treatment or resource recovery. A simple wet and dry waste collection model can promote recycling, treatment of biological waste before landfilling, resource recovery, labour intensive jobs and hence sustainable landfilling in the South African scenario as well as in similar developing countries.


Subject(s)
Waste Management/methods , Austria , Biodegradation, Environmental , Cities , England , Pilot Projects , Refuse Disposal/methods , South Africa
11.
J Hazard Mater ; 178(1-3): 1100-5, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20122792

ABSTRACT

Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost.


Subject(s)
Biodegradation, Environmental , Nitrites/chemistry , Pinus/chemistry , Soil/analysis , Water Pollutants, Chemical/chemistry , Ammonia/chemistry , Anaerobiosis , Bioreactors , Gases/chemistry , Hydrogen-Ion Concentration , Industrial Waste , Industry , Kinetics , Oxygen/chemistry , Paper , Plant Bark/chemistry
12.
Waste Manag ; 28(8): 1480-92, 2008.
Article in English | MEDLINE | ID: mdl-17714928

ABSTRACT

The aim of this paper is to describe the optimisation of Waste Minimisation/Zero Waste strategies into an already established integrated waste management system and to present a Zero Waste model for post-consumer waste for urban communities in South Africa. The research was undertaken towards the fulfilment of the goals of the Polokwane Declaration on Waste Management [DEAT, 2001. Department of Environmental Affairs and Tourism, Government of South Africa. Polokwane Declaration. Drafted by Government, Civil Society and the Business Community. National Waste Summit, Polokwane, 26-28 September 2001], which has set as its target the reduction of waste generation and disposal by 50% and 25%, respectively, by 2012 and the development of a plan for Zero Waste by 2022. Two communities, adjacent to the Mariannhill Landfill site in Durban, were selected as a case study for a comparative analysis of formal and informal settlements. Since the waste generated from these two communities is disposed of at the Mariannhill landfill, the impact of Zero Waste on landfill volumes could be readily assessed. A Zero Waste scheme, based on costs and landfill airspace savings, was proposed for the area. The case study demonstrates that waste minimisation schemes can be introduced into urban areas, in emerging countries, with differing levels of service and that Zero Waste models are appropriate to urban areas in South Africa.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Refuse Disposal/methods , Waste Management/methods , Cost-Benefit Analysis , Developing Countries , Ecosystem , Humans , Seasons , South Africa , Surveys and Questionnaires , Time Factors , Water Pollutants/analysis
13.
Waste Manag ; 27(1): 96-105, 2007.
Article in English | MEDLINE | ID: mdl-16500098

ABSTRACT

In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25 (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The process monitoring revealed that prevailing climatic conditions in a subtropical location do not affect the high efficiency of this technology. However, the composition of the input material can be detrimental for production of high quality compost because of a lack of nitrate.


Subject(s)
Conservation of Natural Resources , Pinus , Plant Bark , Soil , Models, Biological , Waste Management
SELECTION OF CITATIONS
SEARCH DETAIL
...