Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 172: 112222, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968650

ABSTRACT

Acoustic stimulation appears to be a promising strategy in reducing the risk of falling in older adults, demonstrating effectiveness in improving stability. However, its impact on movement variability, another crucial indicator of fall risk, seems to be limited. This study aims to assess movement variability during walking in a cohort of healthy older adults exposed to three different frequencies of acoustic stimulation (90%, 100% and 110% of each subject's average cadence). Using a systemic approach based on network theory, which considers the intricate relationships between all body segments, we constructed connectivity matrices composed of nodes, represented by bony landmarks, and edges, consisting of the standardised covariance of accelerations between each pair of nodes. By introducing a new metric called Similarity Score (S-score), we quantified the ability of each individual to repeat the same motor pattern at each gait cycle under different experimental conditions. The study revealed that rhythmic auditory stimulation (RAS) at 100% and 90% of the mean cadence significantly increased the S-scores compared to the baseline. These results highlight the effects of RAS in increasing gait repeatability in healthy older adults, with a focus on global kinematics.


Subject(s)
Acoustic Stimulation , Gait , Humans , Gait/physiology , Aged , Female , Male , Acoustic Stimulation/methods , Biomechanical Phenomena , Walking/physiology , Middle Aged
2.
iScience ; 27(7): 110101, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38974971

ABSTRACT

Multiple sclerosis (MS) diagnosis typically involves assessing clinical symptoms, MRI findings, and ruling out alternative explanations. While myelin damage broadly affects conduction speeds, traditional tests focus on specific white-matter tracts, which may not reflect overall impairment accurately. In this study, we integrate diffusion tensor immaging (DTI) and magnetoencephalography (MEG) data into individualized virtual brain models to estimate conduction velocities for MS patients and controls. Using Bayesian inference, we demonstrated a causal link between empirical spectral changes and inferred slower conduction velocities in patients. Remarkably, these velocities proved superior predictors of clinical disability compared to structural damage. Our findings underscore a nuanced relationship between conduction delays and large-scale brain dynamics, suggesting that individualized velocity alterations at the whole-brain level contribute causatively to clinical outcomes in MS.

3.
Netw Neurosci ; 7(1): 73-85, 2023.
Article in English | MEDLINE | ID: mdl-37334007

ABSTRACT

The functional organization of the brain is usually presented with a back-to-front gradient of timescales, reflecting regional specialization with sensory areas (back) processing information faster than associative areas (front), which perform information integration. However, cognitive processes require not only local information processing but also coordinated activity across regions. Using magnetoencephalography recordings, we find that the functional connectivity at the edge level (between two regions) is also characterized by a back-to-front gradient of timescales following that of the regional gradient. Unexpectedly, we demonstrate a reverse front-to-back gradient when nonlocal interactions are prominent. Thus, the timescales are dynamic and can switch between back-to-front and front-to-back patterns.

4.
Psychol Res ; 87(7): 2111-2119, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36800010

ABSTRACT

The study of the development of visuospatial memory processes is useful for devising personalized educational interventions as well as for understanding the changes in cognitive functioning in an era characterized by technological progress. The present research is aimed at investigating spatial working memory ability in children that attended the first three years of primary school by means of the Brick Game Task (BGT), a novel visuospatial working memory test. BGT is a small-scale ecological test inspired by behavioral walking tasks with nine white bricks in different spatial configurations as well as to Corsi Block-Tapping test.228 Italian children (121 F; mean age: 7.22 ± 1.18) were assigned to three groups based on the primary school class attended: Group 1 (N = 85; 40 F; mean age 6.18 ± .5), Group 2 (N = 61; 36 F; mean age 7.2 ± .83), and Group 3 (N = 82; 44 F; mean age 8.32 ± .94). All participants were asked to complete the Digit Span test, the Corsi Block-Tapping test, and to explore the three spatial configurations of the BGT with the form of Matrix, M-BGT, Cluster, CL-BGT, Cross, CR-BGT.MANOVA revealed a main significant effect for Group (F12,434 = 15.06; p < .0001) indicating that the group of older obtained a better global executive performance than 1 and 2 groups. Multiple linear regression indicated that Corsi Block-Tapping test performance and Age significantly predicted the M-BGT score. Moreover, Corsi Block-Tapping test and Digit Span significantly predicted the CL-BGT performance, showing how a higher score results in a better CL- BGT performance. Finally, Corsi Block-Tapping test, Digit Span, and Age were positively associated with the CR- BGT performance. The present findings evidenced that novel BGT is a sensible visuospatial working memory task suggesting thus its use to assess the children's executive performance in ecological way. These results open to the development of personalized educational interventions.


Subject(s)
Memory, Short-Term , Spatial Navigation , Humans , Child , Child, Preschool , Cognition
5.
J Neurosci ; 42(47): 8807-8816, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36241383

ABSTRACT

Two structurally connected brain regions are more likely to interact, with the lengths of the structural bundles, their widths, myelination, and the topology of the structural connectome influencing the timing of the interactions. We introduce an in vivo approach for measuring functional delays across the whole brain in humans (of either sex) using magneto/electroencephalography (MEG/EEG) and integrating them with the structural bundles. The resulting topochronic map of the functional delays/velocities shows that larger bundles have faster velocities. We estimated the topochronic map in multiple sclerosis patients, who have damaged myelin sheaths, and controls, demonstrating greater delays in patients across the network and that structurally lesioned tracts were slowed down more than unaffected ones. We provide a novel framework for estimating functional transmission delays in vivo at the single-subject and single-tract level.SIGNIFICANCE STATEMENT This article provides a straightforward way to estimate patient-specific delays and conduction velocities in the CNS, at the individual level, in healthy and diseased subjects. To do so, it uses a principled way to merge magnetoencephalography (MEG)/electroencephalography (EEG) and tractography.


Subject(s)
Connectome , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Magnetoencephalography , Brain/diagnostic imaging , Connectome/methods , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...