Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 55(9): 368-380, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486084

ABSTRACT

Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.


Subject(s)
Hibernation , Insulin Resistance , Ursidae , Animals , Ursidae/genetics , Ursidae/metabolism , Hibernation/genetics , Seasons , Glucose/metabolism , Insulin Resistance/genetics , Gene Expression
2.
iScience ; 25(10): 105084, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36317158

ABSTRACT

Understanding how metabolic reprogramming happens in cells will aid the progress in the treatment of a variety of metabolic disorders. Brown bears undergo seasonal shifts in insulin sensitivity, including reversible insulin resistance in hibernation. We performed RNA-sequencing on brown bear adipocytes and proteomics on serum to identify changes possibly responsible for reversible insulin resistance. We observed dramatic transcriptional changes, which depended on both the cell and serum season of origin. Despite large changes in adipocyte gene expression, only changes in eight circulating proteins were identified as related to the seasonal shifts in insulin sensitivity, including some that have not previously been associated with glucose homeostasis. The identified serum proteins may be sufficient for shifting hibernation adipocytes to an active-like state.

3.
G3 (Bethesda) ; 12(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-35100340

ABSTRACT

Understanding hibernation in brown bears (Ursus arctos) can provide insight into some human diseases. During hibernation, brown bears experience periods of insulin resistance, physical inactivity, extreme bradycardia, obesity, and the absence of urine production. These states closely mimic aspects of human diseases such as type 2 diabetes, muscle atrophy, as well as renal and heart failure. The reversibility of these states from hibernation to active season enables the identification of mediators with possible therapeutic value for humans. Recent studies have identified genes and pathways that are differentially expressed between active and hibernation seasons in bears. However, little is known about the role of differential expression of gene isoforms on hibernation physiology. To identify both distinct and novel mRNA isoforms, full-length RNA-sequencing (Iso-Seq) was performed on adipose, skeletal muscle, and liver from three individual bears sampled during both active and hibernation seasons. The existing reference genome annotation was improved by combining it with the Iso-Seq data. Short-read RNA-sequencing data from six individuals were mapped to the new reference annotation to quantify differential isoform usage (DIU) between tissues and seasons. We identified differentially expressed isoforms in all three tissues, to varying degrees. Adipose had a high level of DIU with isoform switching, regardless of whether the genes were differentially expressed. Our analyses revealed that DIU, even in the absence of differential gene expression, is an important mechanism for modulating genes during hibernation. These findings demonstrate the value of isoform expression studies and will serve as the basis for deeper exploration into hibernation biology.


Subject(s)
Diabetes Mellitus, Type 2 , Gene Expression Regulation , Hibernation , Ursidae , Adipose Tissue/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Hibernation/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Ursidae/genetics , Ursidae/metabolism
4.
Commun Biol ; 3(1): 243, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32404883

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Commun Biol ; 2: 336, 2019.
Article in English | MEDLINE | ID: mdl-31531397

ABSTRACT

Revealing the mechanisms underlying the reversible physiology of hibernation could have applications to both human and animal health as hibernation is often associated with disease-like states. The present study uses RNA-sequencing to reveal the tissue and seasonal transcriptional changes occurring in grizzly bears (Ursus arctos horribilis). Comparing hibernation to other seasons, bear adipose has a greater number of differentially expressed genes than liver and skeletal muscle. During hyperphagia, adipose has more than 900 differentially expressed genes compared to active season. Hibernation is characterized by reduced expression of genes associated with insulin signaling, muscle protein degradation, and urea production, and increased expression within muscle protein anabolic pathways. Across all three tissues we find a subset of shared differentially expressed genes, some of which are uncharacterized, that together may reflect a common regulatory mechanism. The identified gene families could be useful for developing novel therapeutics to treat human and animal diseases.


Subject(s)
Gene Expression Profiling , Hibernation/genetics , Transcriptome , Ursidae/physiology , Animals , Energy Metabolism , Organ Specificity
6.
Genome ; 61(4): 241-247, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29268023

ABSTRACT

The mangrove rivulus, Kryptolebias marmoratus, is one of only two self-fertilizing hermaphroditic fish species and inhabits mangrove forests. While selfing can be advantageous, it reduces heterozygosity and decreases genetic diversity. Studies using microsatellites found that there are variable levels of selfing among populations of K. marmoratus, but overall, there is a low rate of outcrossing and, therefore, low heterozygosity. In this study, we used whole-genome data to assess the levels of heterozygosity in different lineages of the mangrove rivulus and infer the phylogenetic relationships among those lineages. We sequenced whole genomes from 15 lineages that were completely homozygous at microsatellite loci and used single nucleotide polymorphisms (SNPs) to determine heterozygosity levels. More variation was uncovered than in studies using microsatellite data because of the resolution of full genome sequencing data. Moreover, missense polymorphisms were found most often in genes associated with immune function and reproduction. Inferred phylogenetic relationships suggest that lineages largely group by their geographic distribution. The use of whole-genome data provided further insight into genetic diversity in this unique species. Although this study was limited by the number of lineages that were available, these data suggest that there is previously undescribed variation within lineages of K. marmoratus that could have functional consequences and (or) inform us about the limits to selfing (e.g., genetic load, accumulation of deleterious mutations) and selection that might favor the maintenance of heterozygosity. These results highlight the need to sequence additional individuals within and among lineages.


Subject(s)
Cyprinodontiformes/genetics , Hermaphroditic Organisms/genetics , Self-Fertilization , Whole Genome Sequencing/methods , Animals , Caribbean Region , Cyprinodontiformes/classification , Genome/genetics , Geography , Hermaphroditic Organisms/classification , Heterozygote , Homozygote , Microsatellite Repeats/genetics , Phylogeny , Polymorphism, Single Nucleotide , Vertebrates/classification , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...