Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5505-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737538

ABSTRACT

A method for assessing maximum foot clearance (maxFCl) during overground walking and obstacle passing using magnetic and inertial measurement units (MIMUs) placed above the malleoli is proposed and validated. The method precision and accuracy were evaluated using a stereo-photogrammetric system as a gold standard. The proposed method was applied to the data obtained from the gait of both healthy subjects and patients with various abnormal gaits. First, an optimally filtered direct and reverse integration (OFDRI) was used for each gait cycle to determine the gait velocity. Then, the effect of an additional OFDRI or a simple DRI approach for obtaining vertical foot displacement was explored. The results showed that the mean absolute errors associated to the maxFCl estimates were about 10% of its range of variation for the healthy and pathological subjects during overground walking. An accurate estimate of the maxFCl during obstacle passing was reached (mean absolute errors less than 5%). Additional testing on gait at various gait speed and on a greater number of subjects should be carried out to fully validate the MIMU-based maxFCl estimates.


Subject(s)
Walking , Biomechanical Phenomena , Foot , Humans , Kinetics
2.
Article in English | MEDLINE | ID: mdl-25570500

ABSTRACT

The aim of this study was to propose and comparatively evaluate four methods for assessing stride-by-stride changes of direction of progression, during straight walking using measurements of a magnetic and inertial unit placed above the malleolus. The four methods were evaluated by comparing their estimate of the gait changes of direction of progression with that obtained from an instrumented gait mat used as a gold standard. The methods were applied to the data obtained from the gait of both healthy subjects and patients with Huntington Disease, the latter characterized by a jerky swing phase. The results showed that the errors associated to the best estimates of the gait direction changes were about 10% of its range of variability for the healthy subjects and increased to about 30% for the patients, both walking at comfortable speed when the range of variability is the largest. Additional testing on gait at various radius of curvature should be carried out to fully validate the MIMU-based estimates.


Subject(s)
Accelerometry/instrumentation , Gait/physiology , Huntington Disease/physiopathology , Walking/physiology , Aged , Algorithms , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...