Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Med ; 124(5): 422-431, 2019 May.
Article in English | MEDLINE | ID: mdl-30607866

ABSTRACT

PURPOSE: Prostatectomy, radiotherapy and watchful waiting are the main therapeutic options available for local stage of prostate cancer (PCa). We report our experience on 394 patients affected by prostate cancer primarily treated with high-dose, image-guided, IMRT, focusing on gastrointestinal, genitourinary toxicities and biochemical control. METHODS: From July 2003 to August 2014, 394 patients were treated with radical high-dose radiotherapy (HDRT) for prostate cancer; the mean total radiation dose was 79 Gy in standard fractions. Hormonal therapy (HT) was administered to 7.6% of low-risk patients, to 20.3% of intermediate-risk patients and to 72% of high-risk patients. Patients were evaluated for biochemical failure, local recurrence (LR) and metastases. RESULTS: Ninety-seven patients (26.65%) developed acute GU toxicity at the medium dose of 25.4 Gy, grade 1 (G1) or grade 2 (G2) in 94 cases. Only 16 patients (4.06%) reported chronic GU toxicity (G1 or G2), and one case developed G3 cystitis. No G3 GI acute and late toxicity were detected. Fifty-six (14.2%) patients experienced LR, 26 (6.6%) developed metastases and 70 patients (17.8%) were deceased. Gleason sum score > 7 was predictive for worse overall survival (GS = 7 was borderline) and for metastasis. No factors resulted predictive for local relapse. HT pre-RT had been demonstrated as a negative predictor for OS and DFS-DM. CONCLUSIONS: Data confirm the safety of HDRT for PCa. Treatment was efficient with low toxicity profile. Moreover, continued technologic advancements, as image-guided radiotherapy, could lead to further reduction in toxicity, thus increasing the therapeutic index.


Subject(s)
Adenocarcinoma/radiotherapy , Gastrointestinal Diseases/etiology , Male Urogenital Diseases/etiology , Prostatic Neoplasms/radiotherapy , Radiation Injuries/epidemiology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Adenocarcinoma/pathology , Aged , Aged, 80 and over , Gastrointestinal Diseases/epidemiology , Humans , Lymphatic Metastasis , Magnetic Resonance Imaging , Male , Male Urogenital Diseases/epidemiology , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/adverse effects , Retrospective Studies , Tomography, X-Ray Computed , Treatment Outcome
2.
Oral Oncol ; 64: 52-58, 2017 01.
Article in English | MEDLINE | ID: mdl-28024724

ABSTRACT

BACKGROUND: Due to its anti-inflammatory, antifibrotic and antineoplastic properties, the PPAR gamma agonist rosiglitazone is of interest in prevention and therapy of radiation-induced toxicities. We aimed to evaluate the radioprotective effect of rosiglitazone in a mouse model of radiation-induced oral mucositis. MATERIAL AND METHODS: Oral mucositis was obtained by irradiation of the oral region of C57BL/6J mice, pretreated or not with rosiglitazone. Mucositis was assessed by macroscopic scoring, histology and molecular analysis. Tumor xenograft was obtained by s.c. injection of Hep-2 cells in CD1 mice. Tumor volume was measured twice a week to evaluate effect of rosiglitazone alone and combined with radiotherapy. RESULTS: Irradiated mice showed typical features of oral mucositis, such as oedema and reddening, reaching the peak of damage after 12-15days. Rosiglitazone markedly reduced visible signs of mucositis and significantly reduced the peak. Histological analysis showed the presence of an inflammatory cell infiltrate after irradiation; the association with rosiglitazone noticeably reduced infiltration. Rosiglitazone significantly inhibited radiation-induced tnfα, Il-6 and Il-1ß gene expression. Rosiglitazone controlled the increase of TGF-ß and NF-kB p65 subunit proteins induced by irradiation, and enhanced the expression of catalase. Irradiation and rosiglitazone significantly reduced tumor volume as compared to control. Rosiglitazone did not protect tumor from the therapeutic effect of radiation. CONCLUSION: Rosiglitazone exerted a protective action on normal tissues in radiation-induced mucositis. Moreover, it showed antineoplastic properties on head-neck carcinoma xenograft model and selective protection of normal tissues. Thus, PPAR gamma agonists should be further investigated as radioprotective agents in head and neck cancer.


Subject(s)
Disease Models, Animal , PPAR gamma/agonists , Radiotherapy/adverse effects , Stomatitis/prevention & control , Animals , Mice , Mice, Inbred C57BL , Stomatitis/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...