Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38539832

ABSTRACT

Ferroptosis is a type of programmed cell death that differs from apoptosis, autophagy, and necrosis and is related to several physio-pathological processes, including tumorigenesis, neurodegeneration, senescence, blood diseases, kidney disorders, and ischemia-reperfusion injuries. Ferroptosis is linked to iron accumulation, eliciting dysfunction of antioxidant systems, which favor the production of lipid peroxides, cell membrane damage, and ultimately, cell death. Thus, signaling pathways evoking ferroptosis are strongly associated with those protecting cells against iron excess and/or lipid-derived ROS. Here, we discuss the interaction between the metabolic pathways of ferroptosis and antioxidant systems, with a particular focus on transcription factors implicated in the regulation of ferroptosis, either as triggers of lipid peroxidation or as ferroptosis antioxidant defense pathways.

2.
Open Biol ; 14(2): 230319, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38350611

ABSTRACT

Transient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1S). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1S, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an in silico prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression. Expression studies in K562 cells revealed that miR-1202 directly targets GATA-1, negatively regulates its expression, impairs GATA-1S production, reduces cell proliferation, and increases apoptosis sensitivity. Furthermore, data from TAM and myeloid leukaemia patients provided substantial support to our study by showing that miR-1202 down-modulation is accompanied by increased GATA-1 levels, with more marked effects on GATA-1S. These findings indicate that miR-1202 acts as an anti-oncomiR in myeloid cells and may impact leukaemogenesis at least in part by down-modulating GATA-1S levels.


Subject(s)
Down Syndrome , Leukemia, Myeloid , Leukemoid Reaction , MicroRNAs , Humans , Down Syndrome/genetics , Down Syndrome/complications , Down Syndrome/pathology , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Leukemoid Reaction/complications , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Biology (Basel) ; 12(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37106711

ABSTRACT

The erythroid transcriptional factor Krüppel-like factor 1 (KLF1) is a master regulator of erythropoiesis. Mutations that cause KLF1 haploinsufficiency have been linked to increased fetal hemoglobin (HbF) and hemoglobin A2 (HbA2) levels with ameliorative effects on the severity of ß-thalassemia. With the aim of determining if KLF1 gene variations might play a role in the modulation of ß-thalassemia, in this study we screened 17 subjects showing a ß-thalassemia-like phenotype with a slight or marked increase in HbA2 and HbF levels. Overall, seven KLF1 gene variants were identified, of which two were novel. Functional studies were performed in K562 cells to clarify the pathogenic significance of these mutations. Our study confirmed the ameliorative effect on the thalassemia phenotype for some of these variants but also raised the notion that certain mutations may have deteriorating effects by increasing KLF1 expression levels or enhancing its transcriptional activity. Our results indicate that functional studies are required to evaluate the possible effects of KLF1 mutations, particularly in the case of the co-existence of two or more mutations that could differently contribute to KLF1 expression or transcriptional activity and consequently to the thalassemia phenotype.

4.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978786

ABSTRACT

Ferroptosis is a recently recognized form of regulated cell death involving lipid peroxidation. Glutathione peroxidase 4 (GPX4) plays a central role in the regulation of ferroptosis through the suppression of lipid peroxidation generation. Connections have been reported between ferroptosis, lipid metabolism, cancer onset, and drug resistance. Recently, interest has grown in ferroptosis induction as a potential strategy to overcome drug resistance in hematological malignancies. GATA-1 is a key transcriptional factor controlling hematopoiesis-related gene expression. Two GATA-1 isoforms, the full-length protein (GATA-1FL) and a shorter isoform (GATA-1S), are described. A balanced GATA-1FL/GATA-1S ratio helps to control hematopoiesis, with GATA-1S overexpression being associated with hematological malignancies by promoting proliferation and survival pathways in hematopoietic precursors. Recently, optical techniques allowed us to highlight different lipid profiles associated with the expression of GATA-1 isoforms, thus raising the hypothesis that ferroptosis-regulated processes could be involved. Lipidomic and functional analysis were conducted to elucidate these mechanisms. Studies on lipid peroxidation production, cell viability, cell death, and gene expression were used to evaluate the impact of GPX4 inhibition. Here, we provide the first evidence that over-expressed GATA-1S prevents K562 myeloid leukemia cells from lipid peroxidation-induced ferroptosis. Targeting ferroptosis is a promising strategy to overcome chemoresistance. Therefore, our results could provide novel potential therapeutic approaches and targets to overcome drug resistance in hematological malignancies.

5.
Antioxidants (Basel) ; 11(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36552667

ABSTRACT

Coffee consumption positively influences colon health. Conversely, high levels of tryptophan metabolites such as skatole released from intestinal putrefactive fermentation in the presence of excessive dietary animal protein intake, and gut microbiota alterations, may have several adverse effects, including the development of colorectal cancer. Therefore, this study aimed to elucidate the potential protective effects of coffee in the presence of different skatole levels. The results showed that skatole exposure induced reduced cell viability and oxidative stress in the HT-29 human colon cancer cell line. However, co-treatment of cells with skatole and coffee samples was able to reduce ROS production (up to 45% for espresso) compared to cells not treated with coffee. Real-time PCR analysis highlighted that treating HT-29 cells with skatole increased the levels of inflammatory cytokines and chemokines TNF-α, IL-1ß, IL-8, and IL12, whereas exposure to coffee extracts in cells that were pretreated with skatole showed anti-inflammatory effects with decreased levels of these cytokines. These findings demonstrate that coffee may counteract the adverse effects of putrefactive compounds by modulating oxidative stress and exerting anti-inflammatory activity in colonocytes, thus suggesting that coffee intake could improve health conditions in the presence of altered intestinal microbiota metabolism.

6.
Cancers (Basel) ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36612072

ABSTRACT

Hereditary non-polyposis colorectal cancer is also known as Lynch syndrome. Lynch syndrome is associated with pathogenetic variants in one of the mismatch repair (MMR) genes. In addition to colorectal cancer, the inefficiency of the MMR system leads to a greater predisposition to cancer of the endometrium and other cancers of the abdominal sphere. Molecular diagnosis is performed to identify pathogenetic variants in MMR genes. However, for many patients with clinically suspected Lynch syndrome, it is not possible to identify a pathogenic variant in MMR genes. Molecular diagnosis is essential for referring patients to specific surveillance to prevent the development of tumors related to Lynch syndrome. This review summarizes the main aspects of Lynch syndrome and recent advances in the field and, in particular, emphasizes the factors that can lead to the loss of expression of MMR genes.

7.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34679737

ABSTRACT

GATA-1 is a key regulator of hematopoiesis. A balanced ratio of its two isoforms, GATA-1FL and GATA-1S, contributes to normal hematopoiesis, whereas aberrant expression of GATA-1S alters the differentiation/proliferation potential of hematopoietic precursors and represents a poor prognostic factor in myeloid leukemia. We previously reported that GATA-1S over-expression correlates with high levels of the succinate dehydrogenase subunit C (SDHC). Alternative splicing variants of the SDHC transcript are over-expressed in several tumors and act as potent dominant negative inhibitors of SDH activity. With this in mind, we investigated the levels of SDHC variants and the oxidative mitochondrial metabolism in myeloid leukemia K562 cells over-expressing GATA-1 isoforms. Over-expression of SDHC variants accompanied by decreased SDH complex II activity and oxidative phosphorylation (OXPHOS) efficiency was found associated only with GATA-1S. Given the tumor suppressor role of SDH and the effects of OXPHOS limitations in leukemogenesis, identification of a link between GATA-1S and impaired complex II activity unveils novel pro-leukemic mechanisms triggered by GATA-1S. Abnormal levels of GATA-1S and SDHC variants were also found in an acute myeloid leukemia patient, thus supporting in vitro results. A better understanding of these mechanisms can contribute to identify novel promising therapeutic targets in myeloid leukemia.

8.
Cancers (Basel) ; 13(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34572889

ABSTRACT

Mismatch Repair (MMR) gene dysregulation plays a fundamental role in Lynch Syndrome (LS) pathogenesis, a form of hereditary colorectal cancer. Loss or overexpression of key MMR genes leads to genome instability and tumorigenesis; however, the mechanisms controlling MMR gene expression are unknown. One such gene, MSH2, exerts an important role, not only in MMR, but also in cell proliferation, apoptosis, and cell cycle control. In this study, we explored the functions and underlying molecular mechanisms of increased MSH2 expression related to a c.*226A>G variant in the 3'untranslated (UTR) region of MSH2 that had been previously identified in a subject clinically suspected of LS. Bioinformatics identified a putative binding site for miR-137 in this region. To verify miRNA targeting specificity, we performed luciferase gene reporter assays using a MSH2 3'UTR psiCHECK-2 vector in human SW480 cells over-expressing miR-137, which showed a drastic reduction in luciferase activity (p > 0.0001). This effect was abolished by site-directed mutagenesis of the putative miR-137 seed site. Moreover, in these cells we observed that miR-137 levels were inversely correlated with MSH2 expression levels. These results were confirmed by results in normal and tumoral tissues from the patient carrying the 3'UTR c.*226A>G variant in MSH2. Finally, miR-137 overexpression in SW480 cells significantly suppressed cell proliferation in a time- and dose-dependent manner (p < 0.0001), supporting a role for MSH2 in apoptosis and cell proliferation processes. Our findings suggest miR-137 helps control MSH2 expression via its 3'UTR and that dysregulation of this mechanism appears to promote tumorigenesis in colon cells.

9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671113

ABSTRACT

Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Apoptosis , Homeostasis , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Signal Transduction
10.
J Cell Physiol ; 234(11): 20829-20846, 2019 11.
Article in English | MEDLINE | ID: mdl-31049966

ABSTRACT

Maintenance of a balanced expression of the two isoforms of the transcription factor GATA-1, the full-length protein (GATA-1FL ) and a shorter isoform (GATA-1 S ), contributes to control hematopoiesis, whereas their dysregulation can alter the differentiation/proliferation potential of hematopoietic precursors thereby eventually leading to a variety of hematopoietic disorders. Although it is well established that these isoforms play opposite roles in these remarkable processes, most of the molecular pathways involved remain unknown. Here, we demonstrate that GATA-1FL and GATA-1S are able to differently influence intracellular redox states and reactive oxygen species (ROS) compartmentation in the erythroleukemic K562 cell line, thus shedding novel mechanistic insights into the processes of cell proliferation and apoptosis resistance in myeloid precursors. Furthermore, given the role played by ROS signaling as a strategy to escape apoptosis and evade cell-mediated immunity in myeloid cells, this study highlights a mechanism through which aberrant expression of GATA-1 isoforms could play a role in the leukemogenic process.


Subject(s)
Cell Compartmentation , GATA1 Transcription Factor/metabolism , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Apoptosis/drug effects , Cell Survival/drug effects , Cytochrome b Group/metabolism , DNA, Mitochondrial/metabolism , Electron Transport Complex II/metabolism , Humans , K562 Cells , Oxidation-Reduction , Oxidative Stress/drug effects , Protein Isoforms/metabolism , Protein Subunits/metabolism , Quercetin/pharmacology , Succinate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...