Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37237953

ABSTRACT

Mitochondrial DNA (mtDNA) is particularly vulnerable to somatic mutagenesis. Potential mechanisms include DNA polymerase γ (POLG) errors and the effects of mutagens, such as reactive oxygen species. Here, we studied the effects of transient hydrogen peroxide (H2O2 pulse) on mtDNA integrity in cultured HEK 293 cells, applying Southern blotting, ultra-deep short-read and long-read sequencing. In wild-type cells, 30 min after the H2O2 pulse, linear mtDNA fragments appear, representing double-strand breaks (DSB) with ends characterized by short GC stretches. Intact supercoiled mtDNA species reappear within 2-6 h after treatment and are almost completely recovered after 24 h. BrdU incorporation is lower in H2O2-treated cells compared to non-treated cells, suggesting that fast recovery is not associated with mtDNA replication, but is driven by rapid repair of single-strand breaks (SSBs) and degradation of DSB-generated linear fragments. Genetic inactivation of mtDNA degradation in exonuclease deficient POLG p.D274A mutant cells results in the persistence of linear mtDNA fragments with no impact on the repair of SSBs. In conclusion, our data highlight the interplay between the rapid processes of SSB repair and DSB degradation and the much slower mtDNA re-synthesis after oxidative damage, which has important implications for mtDNA quality control and the potential generation of somatic mtDNA deletions.

2.
Methods Mol Biol ; 2615: 229-240, 2023.
Article in English | MEDLINE | ID: mdl-36807796

ABSTRACT

The manipulation of mitochondrial DNA (mtDNA) copy number in cultured cells, using substances that interfere with DNA replication, is a useful tool to investigate various aspects of mtDNA maintenance. Here we describe the use of 2',3'-dideoxycytidine (ddC) to induce a reversible reduction of mtDNA copy number in human primary fibroblasts and human embryonic kidney (HEK293) cells. Once the application of ddC is stopped, cells depleted for mtDNA attempt to recover normal mtDNA copy numbers. The dynamics of repopulation of mtDNA provide a valuable measure for the enzymatic activity of the mtDNA replication machinery.


Subject(s)
DNA, Mitochondrial , Zalcitabine , Humans , Zalcitabine/pharmacology , DNA, Mitochondrial/genetics , HEK293 Cells , Mitochondria/genetics , Cells, Cultured , DNA Replication
3.
Nat Commun ; 9(1): 1727, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712893

ABSTRACT

Emerging gene therapy approaches that aim to eliminate pathogenic mutations of mitochondrial DNA (mtDNA) rely on efficient degradation of linearized mtDNA, but the enzymatic machinery performing this task is presently unknown. Here, we show that, in cellular models of restriction endonuclease-induced mtDNA double-strand breaks, linear mtDNA is eliminated within hours by exonucleolytic activities. Inactivation of the mitochondrial 5'-3'exonuclease MGME1, elimination of the 3'-5'exonuclease activity of the mitochondrial DNA polymerase POLG by introducing the p.D274A mutation, or knockdown of the mitochondrial DNA helicase TWNK leads to severe impediment of mtDNA degradation. We do not observe similar effects when inactivating other known mitochondrial nucleases (EXOG, APEX2, ENDOG, FEN1, DNA2, MRE11, or RBBP8). Our data suggest that rapid degradation of linearized mtDNA is performed by the same machinery that is responsible for mtDNA replication, thus proposing novel roles for the participating enzymes POLG, TWNK, and MGME1.


Subject(s)
DNA Cleavage , DNA Replication , DNA, Mitochondrial/genetics , Gene Editing/methods , Mitochondria/genetics , Base Sequence , CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , DNA, Mitochondrial/metabolism , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Genetic Therapy , HEK293 Cells , Humans , Mitochondria/metabolism , Mitochondria/pathology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...